Eurasian Soil Science

, Volume 50, Issue 11, pp 1311–1317 | Cite as

Biosynthetic potential of actinomycetes in brown forest soil on the eastern coast of the aegean sea

  • I. G. ShirokikhEmail author
  • A. A. Shirokikh
Soil Biology


The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.


Cambisols Pinus brutia var. pendulifolia soil actinomycetes structure of the complex antimicrobial activity hydrolysis of cellulose synthesis of auxins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Gauze, T. P. Preobrazhenskaya, M. A. Sveshnikova, L. P. Terekhova, and T. S. Maksimova, Guide for Identification of Actinomyces. The Sreptomyces, Streptoverticillium, and Chainia Genera (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    N. S. Egorov, Fundamentals of Science about Antibiotics (Vysshaya Shkola, Moscow, 1979) [in Russian].Google Scholar
  3. 3.
    D. G. Zvyagintsev and G. M. Zenova, Ecology of Actinomyces (GEOS, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    G. M. Zenova, Soil Actinomyces from Rare Genera: Methodological Guidelines (Moscow State Univ., Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    G. M. Zenova, T. A. Gracheva, N. A. Manucharova, and D. G. Zvyagintsev, “Actinomyces communities in forest ecosystems,” Eurasian Soil Sci. 29, 1256–1259 (1996).Google Scholar
  6. 6.
    A. G. Isachenko and A. A. Shlyapnikov, The World Nature: Landscapes (Mysl’, Moscow, 1989) [in Russian].Google Scholar
  7. 7.
    O. V. Kokorina and I. G. Shirokikh, “Streptomyces in soils of national forest park in Chanchun city (northeast of China),” in Mechanism of Resistance and Adaptation of Biological Systems to Natural and Technogenic Factors (Vesi, Kirov, 2015), pp. 110–112.Google Scholar
  8. 8.
    Bergey’s Manual of Determinative Bacteriology, Ed. by J. G. Holt, N. R. Krieg, P. H. A. Sneath, and J. T. Staley (Williams and Wilkins, Baltimore, 1994; Mir, Moscow, 1997).Google Scholar
  9. 9.
    E. A. Tsavkelova, S. Yu. Klimova, T. A. Cherdyntseva, and A. I. Netrusov, “Microbial producers of plant growth stimulators and their practical use: a review,” Appl. Biochem. Microbiol. 42 (2), 117–126 (2006).CrossRefGoogle Scholar
  10. 10.
    Yu. D. Shenin, I. I. Novikova, G. V. Kaminskii, and I. A. Ivanova, “Alirinomycin C is a novel macrolide antibiotic from Streptomyces felleus S-8 VIZR II,” Antibiot. Khimioter. 46 (2), 10–16 (2001).Google Scholar
  11. 11.
    I. G. Shirokikh, E. V. Tovstik, and Ya. I. Nazarova, “Prospects for creation of new agricultural biotechnologies and biopreparations based on Vyatka strains of Actinomyces,” Proceedings of the XI International Scientific-Practical Conference daRostim 2015 “Theory, Practice, and Prospects of Biologically Active Compounds in Agriculture,” Syktyvkar, June 17–19, 2015 (Institute of Chemistry, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 2015), pp. 219–222.Google Scholar
  12. 12.
    S. C. Aksoy and A. Uzel, “Extracellular serine proteases produced by Thermoactinomyces strains from hot springs and soils of West Anatolia,” Ann. Microbiol. 62 (2), 483–492 (2012).CrossRefGoogle Scholar
  13. 13.
    A. L. Demain, “Small bugs, big business: the economic power of the microbe,” Biotechnol. Adv. 18 (6), 499–514 (2000).CrossRefGoogle Scholar
  14. 14.
    A. L. Demain and A. Fang, “Emerging concepts of secondary metabolism in actinomycetes,” Actinomycetologia 9, 98–117 (1995).CrossRefGoogle Scholar
  15. 15.
    J. P. Euzéby, List of prokaryotic names with standing in nomenclature, 2009. Scholar
  16. 16.
    J. George, R. Arunachalam, K. Paulkumar, E. Wesely, S. Shiburaj, and G. Annadurai, “Characterization and phylogenetic analysis of cellulase producing S. noboritoensis SPKC1,” Interdiscip. Sci.: Comput. Life Sci. 2 (2), 205–212 (2010).CrossRefGoogle Scholar
  17. 17.
    E. E. Hames-Kocabas and A. Uzel, “Alkaline protease production by an actinomycete MA1-1 isolated from marine sediments,” Ann Microbiol. 57, 71–75 (2007). Scholar
  18. 18.
    T. Kaur, A. Vasudev, S. K. Sohal, and R. K. Manhas, “Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae),” BMC Microbiol. 14 (1), 1 (2014). doi 10.1186/s12866-014-0227-1CrossRefGoogle Scholar
  19. 19.
    H. Korkmaz, M. N. Unaldi, B. Aslan, G. Coral, B. Arikan, S. Dincer, and O. Colak, “Keratinolytic activity of Streptomyces strain BA7, a new isolate from Turkey,” Ann. Microbiol. 53, 85–93 (2003).Google Scholar
  20. 20.
    E. Libbert and H. Risch, “Interactions between plants and epiphytic bacteria regarding their auxin metabolism. V. Isolation and identification of the IAA-producing and destroying bacteria from pea plants,” Physiol. Plant. 22, 51–58 (1969).CrossRefGoogle Scholar
  21. 21.
    N. Myers, R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca, and J. Kent, “Biodiversity hotspots for conservation priorities,” Nature 403 (6772), 853–858 (2000).CrossRefGoogle Scholar
  22. 22.
    A. M. Oskay, T. Üsame, and A. Cem, “Antibacterial activity of some actinomycetes isolated from farming soils of Turkey,” Afr. J. Biotechnol. 3 (9), 441–446 (2004). Scholar
  23. 23.
    K. Özcan, S. Ç. Aksoy, O. Kalkan, A. Uzel, E. E. Hames-Kocabas, and E. Bedir, “Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey,” J. Soils Sediments 13 (8), 1493–1501 (2013). doi 10.1007/s11368-013-0734-yCrossRefGoogle Scholar
  24. 24.
    F. E. Sarigullu, E. Karadeniz, I. Untac, and O. Çolak, “Determination of antibacterial activities of isolated Streptomyces strains from soil at Çukurova University in Turkey,” J. Food Agric Environ. 11 (2), 922–924 (2013).Google Scholar
  25. 25.
    A. Sazak, N. Sahin, M. Camas, K. Guven, D. Cetin, and M. Goodfellow, “Streptosporangium anatoliense sp. nov., isolated from soil in Turkey,” Antonie Leeuwenhoek 102, 269–276 (2012). doi 10.1007/s10482-012-9735-xCrossRefGoogle Scholar
  26. 26.
    H. Sebastian and M. J. Martinez, US Patent 3 864 480, 1975.Google Scholar
  27. 27.
    W. R. Strohl, “Antimicrobials,” in Microbial Diversity and Bioprocessing, Ed. by A. T. Bull (American Society for Microbiology, Washington, 2004), pp. 336–355.CrossRefGoogle Scholar
  28. 28.
    S. Takeda, K. Yaji, K. Matsumoto, T. Amamoto, M. Shindo, and H. Aramaki, “Xanthocidin derivatives as topoisomerase IIa enzymatic inhibitors,” Biol. Pharm. Bull. 37 (2), 331–334 (2014).CrossRefGoogle Scholar
  29. 29.
    R. M. Teather and P. J. Wood, “Use of Congo-red polysaccharide interaction in enumeration and characterization of cellulolytic bacteria the bovine rumen,” Appl. Environ. Microbiol. 43, 777–780 (1982).Google Scholar
  30. 30.
    M. Tuncer, A. Kuru, M. Isikli, N. Sahinand, and F. G. Celenk, “Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey,” J. Appl. Microbiol. 97 (4), 783–791 (2004). doi 10.1111/j.1365-2672.2004.02361.xCrossRefGoogle Scholar
  31. 31.
    M. Yamaç, K. Isik, and N. Sahin, “Numerical classification of streptomycetes isolated from karstic caves in Turkey,” Turk J. Biol. 35, 473–484 (2011). doi 10.3906/biy-0911-185Google Scholar
  32. 32.
    S. Yücel and M. Yamaç, “Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms,” Pak. J. Pharm. Sci. 23 (1), 1–6 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Rudnitsky Zonal Research Institute of Agriculture in the NortheastKirovRussia
  2. 2.Institute of Biology, Komi Science CenterUral Branch of the Russian Academy of Sciences and Vyatka State UniversityKirovRussia

Personalised recommendations