Eurasian Soil Science

, Volume 50, Issue 8, pp 952–960 | Cite as

Stability and morphological and molecular-genetic identification of algae in buried soils

  • A. D. TemraleevaEmail author
  • S. V. Moskalenko
  • M. V. El’tsov
  • I. M. Vagapov
  • A. Yu. Ovchinnikov
  • L. A. Gugalinskaya
  • V. M. Alifanov
  • D. L. Pinskii
Soil Biology


Living cultural strains of the green algae ‘Chlorella’ mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.


green algae 18S rRNA sporopollenin paleosols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Alifanov, L. A. Gugalinskaya, and A. Yu. Ovchinnikov, “The formation of parent materials of the Holocene soils in the center of the East European Plain,” Probl. Reg. Ekol., No. 4, 55–59 (2015).Google Scholar
  2. 2.
    V. M. Andreeva, Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, and Chlorosarcinales) (Nauka, St. Petersburg, 1998) [in Russian].Google Scholar
  3. 3.
    E. V. Arinushkina, Handbook on the Chemical Analysis of Soils (Moscow State Univ., Moscow, 1961) [in Russian].Google Scholar
  4. 4.
    A. G. Blagodatnova, “Cyanobacterial–algal cenoses as the reflection of paleoecological features of Holocene soils,” Vestn. Novosibirsk. Gos. Pedagog. Univ., No. 2 (18), 163–169 (2014).CrossRefGoogle Scholar
  5. 5.
    T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Microbiological study of paleosols buried under kurgans in the desert-steppe zone of the Volga–Don interfluve,” Eurasian Soil Sci. 37, 743–748 (2004).Google Scholar
  6. 6.
    T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Microbial communities in the paleosols of archeological monuments in the desert-steppe,” Eurasian Soil Sci. 33, 978–986 (2000).Google Scholar
  7. 7.
    T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, I. V. Stretovich, and V. A. Demkin, “Microbiological investigations of paleosols of archeological monuments in the steppe zone,” Eurasian Soil Sci. 43, 194–201 (2010).CrossRefGoogle Scholar
  8. 8.
    T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, I. V. Stretovich, and V. A. Demkin, “Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I-IV centuries AD),” Eurasian Soil Sci. 42, 778–787 (2009).CrossRefGoogle Scholar
  9. 9.
    N. N. Kashirskaya, T. E. Khomutova, V. V. Dmitriev, V. I. Duda, N. E. Suzina, and V. A. Demkin, “The morphology of cells and the biomass of microorganisms in the buried paleosols and modern steppe soils of the Lower Volga region,” Eurasian Soil Sci. 43, 1140–1149 (2010).CrossRefGoogle Scholar
  10. 10.
    O. A. Kislova and N. V. Kondrat’eva, “Viability of Nostoc commune Vauch. sensu Elenk. (Cyanophyta) after prolonged storage in air-dry state,” Al’gologiya 5 (2), 130–133 (1995).Google Scholar
  11. 11.
    V. P. Komaristaya and O. S. Gorbulin, “Sporopollenin in cell envelopes of Dunaliella salina Teod. (Chlorophyta) zygotes,” Al’gologiya 16 (1), 47–56 (2006).Google Scholar
  12. 12.
    N. V. Kondrat’eva and O. A. Kislova, “Species composition and occurrence of Cyanophyta in soil samples after prolonged storage in air-dry state,” Al’gologiya 5 (1), 29–33 (1995).Google Scholar
  13. 13.
    G. A. Kochkina, N. E. Ivanushkina, S. G. Karasev, E. Yu. Gavrish, L. V. Gurina, L. I. Evtushenko, E. V. Spirina, D. A. Gilichinskii, S. M. Ozerskaya, and E. A. Vorob’eva, “Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation,” Microbiology (Moscow) 70, 356–364 (2001).CrossRefGoogle Scholar
  14. 14.
    N. A. Kryazhevskikh, E. V. Demkina, N. A. Manucharova, V. S. Soina, V. F. Gal’chenko, and G. I. El’-Registan, “Reactivation of dormant and nonculturable bacterial forms from paleosols and subsoil permafrost,” Microbiology (Moscow) 81, 435–445 (2012).CrossRefGoogle Scholar
  15. 15.
    G. G. Kuzyakhmetov and I. V. Dubovik, Analysis of Soil Algae (Bashkir State Univ., Ufa, 2001) [in Russian].Google Scholar
  16. 16.
    O. E. Marfenina, D. S. Sakharov, A. E. Ivanova, and A. V. Rusakov, “Mycological complexes in Holocene and Late Pleistocene paleohorizons and in fragments of paleosols,” Eurasian Soil Sci. 42, 432–439 (2009).CrossRefGoogle Scholar
  17. 17.
    D. S. Sakharov, Candidate’s Dissertation in Biology (Moscow, 2011).Google Scholar
  18. 18.
    A. D. Temraleeva, M. V. Eltsov, V. A. Demkin, and D. L. Pinsky, “Cyanobacteria and algae of buried soils and their modern analogues,” Paleontol. J. 48, 667–675 (2014).CrossRefGoogle Scholar
  19. 19.
    A. D. Temraleeva, E. V. Mincheva, Yu. S. Bukin, and A. M. Andreeva, Modern Methods for Isolation, Cultivation and Classification of Green Algae (Chlorophyta) (Kostromsk. Pechat. Dvor, Kostroma, 2014) [in Russian].Google Scholar
  20. 20.
    A. D. Temraleeva, E. V. Mincheva, Yu. S. Bukin, M. V. El’tsov, V. A. Demkin, D. Yu. Shcherbakov, and D. L. Pinskii, “Hemiflagellochloris (Chlorophyceae, Chlorophyta) is a new genus of green algae in Russia,” Nov. Sist. Nizshikh Rast. 48, 104–113 (2014).Google Scholar
  21. 21.
    T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “Estimation of the total and active microbial biomasses in buried subkurgan paleosols of different ages,” Microbiology (Moscow) 73, 196–201 (2004).CrossRefGoogle Scholar
  22. 22.
    A. Kh. Sheudzhen, N. N. Neshchadim, and L. M. Onishchenko, Soil Organic Matter and Its Analysis (Adygeya, Maikop, 2007) [in Russian].Google Scholar
  23. 23.
    I. Yu. Kostikov, P. O. Romanenko, E. M. Demchenko, T. M. Darienko, T. I. Mikhailyuk, O. V. Rybchinskii, and A. M. Solonenko, Soil Algae of Ukraine: History and Methods of Analysis, System, and List of Flora (Fitosotsiotsentr, Kiev, 2001) [in Ukrainian].Google Scholar
  24. 24.
    S. C. Agrawal and Manisha, “Growth, survival and reproduction in Chlorella vulgaris and C. variegate with respect to culture age and under different chemical factors,” Folia Microbiol. 52 (4), 399–406 (2007).CrossRefGoogle Scholar
  25. 25.
    S. C. Agrawal and V. Singh, “Viability of dried cells, and survivability and reproduction under water stress, low light, heat, and UV exposure in Chlorella vulgaris,” Isr. J. Plant Sci. 49 (1), 27–32 (2001).CrossRefGoogle Scholar
  26. 26.
    A. W. Atkinson, B. E. S. Gunning, and P. C. L. John, “Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures,” Planta 107 (1), 1–32 (1972).CrossRefGoogle Scholar
  27. 27.
    B. M. Bristol-Roach, “On the retention of vitality by algae from old stored soils,” New Phytol. 18, 92–107 (1919).CrossRefGoogle Scholar
  28. 28.
    U. Brunner and R. Honegger, “Chemical and ultrastructural studies on the distribution of sporopolleninlike biopolymers in six genera of lichen phycobionts,” Can. J. Bot. 63, 2221–2230 (1985).CrossRefGoogle Scholar
  29. 29.
    J. Burczyk, “Biogenetic relationships between ketocarotenoids and sporopollenins in green algae,” Phytochemistry 28, 113–119 (1987).Google Scholar
  30. 30.
    H. Ettl and G. Gärtner, Syllabus der Boden-, Luft-und Flechtenalgen (Stuttgart, Gustav Fischer Verlag, 1995).Google Scholar
  31. 31.
    M. Geisert, T. Rose, W. Bauer, and R. K. Zahn, “Occurrence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics,” Biosystems 20 (2), 133–142 (1987).CrossRefGoogle Scholar
  32. 32.
    W. Gross, “Ecophysiology of algae living in highly acidic environments,” Hydrobiologia 433 (1–3), 31–37 (2000).CrossRefGoogle Scholar
  33. 33.
    M. D. Guiry and G. M. Guiry, AlgaeBase (National University of Ireland, Galway, 2016). http://www. Accessed February 10, 2016.Google Scholar
  34. 34.
    R. Honneger and V. Brunner, “Sporopollenin in cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructure and chemical investigation,” Can. J. Bot. 59 (12), 2713–2734 (1981).CrossRefGoogle Scholar
  35. 35.
    A. Katana, J. Kwiatowski, K. Spalik, B. Zakrys, E. Szalacha, and H. Szymanska, “Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA,” J. Phycol. 37 (3), 443–451 (2001).CrossRefGoogle Scholar
  36. 36.
    J. Konig and E. Peveling, “Cell walls of the phycobionts Trebouxia and Pseudotrebouxia constituents and their localization,” Lichenologist 16, 129–144 (1984).CrossRefGoogle Scholar
  37. 37.
    L. A. Lewis and F. R. Trainor, “Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years,” Phycologia 51 (6), 662–665 (2012).CrossRefGoogle Scholar
  38. 38.
    A. Lukesova and J. Frouz, “Soil and freshwater microalgae as a food source for invertebrates in extreme environments,” in Algae and Cyanobacteria in Extreme Environments, Ed. by J. Seckbach (Springer-Verlag, New York, 2007), pp. 265–284.CrossRefGoogle Scholar
  39. 39.
    O. E. Marfenina, A. E. Ivanova, E. E. Kislova, and D. S. Sacharov, “The mycological properties of medieval culture layers as a form of soil "biological memory” about urbanization,” J. Soils Sediments 8 (5), 340–348 (2008).CrossRefGoogle Scholar
  40. 40.
    B. C. Parker, N. Schanen, and R. Renner, “Viable soil algae from the herbarium of the Missouri Botanical Garden,” Ann. Mo. Bot. Gard. 56, 113–119 (1969).CrossRefGoogle Scholar
  41. 41.
    F. Puel, C. Largeau, and G. Giraud, “Occurrence of a resistant biopolymer in the outer cell walls of the parasitic alga Prototheca wickerhamii (Chlorococcales) ultrastructural and chemical studies,” J. Phycol. 23, 649–656 (1987).CrossRefGoogle Scholar
  42. 42.
    F. R. Trainor, “Survival of algae in a desiccated soil,” Phycologia 9, 111–113 (1970).CrossRefGoogle Scholar
  43. 43.
    F. R. Trainor, “Survival of algae in a desiccated soil: a 25 year study,” Phycologia 24, 79–82 (1985).CrossRefGoogle Scholar
  44. 44.
    F. R. Trainor and R. Gladych, “Survival of algae in desiccated soil: a 35-year study,” Phycologia 34, 191–192 (1995).CrossRefGoogle Scholar
  45. 45.
    R. Ueno, “Visualization of sporopollenin-containing pathogenic green microalga Prototheca wickerhamii by fluorescent in situ hybridization (FISH),” Can. J. Microbiol. 55 (4), 465–472 (2009).CrossRefGoogle Scholar
  46. 46.
    S. Watanabe, S. Tsujimura, T. Misono, S. Nakamura, and H. Inoue, “Hemiflagellochloris kazakhstanica gen. et sp. nov.: a new coccoid green alga with a flagella of considerably unequal lengths from a saline irrigation land in Kazakhstan (Chlorophyceae, Chlorophyta),” J. Phycol. 42 (3), 696–706 (2006).CrossRefGoogle Scholar
  47. 47.
    F. Xiong, J. Komenda, J. Kopecký, and L. Nedbal, “Strategies of ultraviolet-B protection in microscopic algae,” Physiol. Plant. 100 (2), 378–388 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. D. Temraleeva
    • 1
    Email author
  • S. V. Moskalenko
    • 1
  • M. V. El’tsov
    • 1
  • I. M. Vagapov
    • 1
  • A. Yu. Ovchinnikov
    • 1
  • L. A. Gugalinskaya
    • 1
  • V. M. Alifanov
    • 1
  • D. L. Pinskii
    • 1
  1. 1.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia

Personalised recommendations