Skip to main content

Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil


The influence of red clover (Trifolium pratense L.) plants on the decomposition of phenanthrene and octadecane in the soil has been studied. Effect of plant root mass on the abundance of hydrocarbondegrading bacteria, the composition of their communities, and the degradation of hydrocarbons in the soil has been revealed. Changes in the taxonomic composition of hydrocarbon-degrading bacteria under the effect of red clover are characterized by an increase in the abundance of species from the genera Acinetobacter, Kaistia, Novosphingobium, Pseudomonas, and Xanthomonas. A positive effect of the studied microbial–plant association on the degradation of octadecane and especially phenanthrene in the soil has been revealed.

This is a preview of subscription content, access via your institution.


  1. M. A. Baboshin, B. P. Baskunov, Z. I. Finkelstein, E. L. Golovlev, and L. A. Golovleva, “The microbial transformation of phenanthrene and anthracene,” Microbiology (Moscow) 74, 303–309 (2005).

    Article  Google Scholar 

  2. GOST (State Standard) 12038-84: Agricultural Seeds. Methods for Determination of Germination (Izd. Standartov, Moscow, 2004) [in Russian].

  3. G. V. Zaalishvili, G. A. Khatisashvili, D. Sh. Ugrkhelidze, M. Sh. Gordeziani, and G. I. Kvesitadze, “Plant potential for detoxification (review),” Appl. Biochem. Microbiol. 36, 443–451 (2000).

    Article  Google Scholar 

  4. J. H. Miller, Experiments in Molecular Genetics (Cold Spring Harbor Lab., New York, 1972).

    Google Scholar 

  5. A. A. Ovchinnikova, A. A. Vetrova, A. E. Filonov, and A. M. Boronin, “Phenanthrene biodegradation and the interaction of Pseudomonas putida BS3701 and Burkholderia sp. BS3702 in plant rhizosphere,” Microbiology (Moscow) 78, 433–439 (2009).

    Article  Google Scholar 

  6. E. P. Rozanova and T. N. Nazina, “Hydrocarbon-oxidizing bacteria and their activity in oil reservoirs,” Mikrobiologiya 51, 324–348 (1982) [in Russian].

    Google Scholar 

  7. A. M. Semenov, Ecology of Microorganisms, Ed. by A. I. Netrusov (Akademiya, Moscow, 2004), pp. 145–164 [in Russian].

  8. T. A. Sokolova, “Specificity of soil properties in the rhizosphere: analysis of literature data,” Eurasian Soil Sci. 48, 968–980 (2015). doi 10.1134/S1064229315050099

    Article  Google Scholar 

  9. Yu. V. Titov, The Plant Group Effect (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  10. E. N. Tsyganova, D. G. Zvyagintsev, L. V. Lysak, and A. L. Stepanov, “The effect of a bacterial-humus preparation on the biological activity of soils,” Eurasian Soil Sci. 46, 788–792 (2013). doi 10.1134/S1064229313070107

    Article  Google Scholar 

  11. L. N. Anan’ina, O. V. Yastrebova, V. A. Demakov, and E. G. Plotnikova, “Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia,” Antonie van Leeuwenhoek 100 (2), 309–316 (2011). doi 10.1007/s10482-011-9580-3

    Article  Google Scholar 

  12. A. Cébron, B. Louvel, P. Faure, C. France-Lanord, Y. Chen, J. C. Murrell, and C. Leyval, “Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates,” Environ. Microbiol. 13 (3), 722–736 (2011). doi 10.1111/j.1462-2920.2010.02376.x

    Article  Google Scholar 

  13. J. L. Kirk, J. N. Klironomos, H. Lee, and J. T. Trevors, “The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil,” Environ. Pollut. 133, 455–465 (2005). doi 10.1016/j.envpol.2004.06.002

    Article  Google Scholar 

  14. I. Kuiper, E. L. Lagendijk, G. V. Bloemberg, and B. J. Lugtenberg, “Rhizoremediation: a beneficial plant microbe interaction,” Mol. Plant-Microbe Interact. 17, 6–15 (2004).

    Article  Google Scholar 

  15. PubChem Compound. pccompound.

  16. J. A. Rentz, P. J. J. Alvarez, and J. L. Schnoor, “Repression of Pseudomonas putida phenanthrenedegrading activity by plant root extracts and exudates,” Environ. Microbiol. 6, 574–583 (2004). doi 10.1111/ j.1462-2920.2004.00589.x

    Article  Google Scholar 

  17. L. E. Rice and B. B. Hemmingsen, “Enumeration of hydrocarbon-degrading bacteria,” Methods in Biotechnol. 2, 99–109 (1997).

    Google Scholar 

  18. J. Seo, Y. Keum, and Q. Li, “Bacterial degradation of aromatic compounds,” Int. J. Environ. Res. Public Health 6, 278–309 (2009). doi 10.3390/ijerph6010278

    Article  Google Scholar 

  19. J. D. van Hamme, A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiol. Mol. Biol. Rev. 67, 503–549 (2003). doi 10.1128/MMBR.67.4.503-549.2003

    Article  Google Scholar 

  20. S. R. Wild and K. C. Jones, “Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock,” Sci. Total Environ. 119, 85–119 (1992). doi 10.1016/0048-9697(92)90258-T

    Article  Google Scholar 

  21. S. Yousaf, V. Andria, T. G. Reichenauer, K. Smalla, and A. Sessitsch, “Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment,” J. Hazard. Mater. 184, 523–532 (2010). doi 10.1016/j.jhazmat.2010.08.067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Nazarov.

Additional information

Original Russian Text © A.V. Nazarov, E.A. Shestakova, L.N. Anan’yina, 2017, published in Pochvovedenie, 2017, No. 8, pp. 1002–1008.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nazarov, A.V., Shestakova, E.A. & Anan’yina, L.N. Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil. Eurasian Soil Sc. 50, 971–976 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • hydrocarbon-degrading bacteria
  • phytoremediation of hydrocarbons
  • microbial–plant association
  • soddy-podzolic soil (Retisol)