Eurasian Soil Science

, Volume 50, Issue 8, pp 971–976 | Cite as

Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil

  • A. V. NazarovEmail author
  • E. A. Shestakova
  • L. N. Anan’yina
Degradation, Remediation, and Conservation of Soils


The influence of red clover (Trifolium pratense L.) plants on the decomposition of phenanthrene and octadecane in the soil has been studied. Effect of plant root mass on the abundance of hydrocarbondegrading bacteria, the composition of their communities, and the degradation of hydrocarbons in the soil has been revealed. Changes in the taxonomic composition of hydrocarbon-degrading bacteria under the effect of red clover are characterized by an increase in the abundance of species from the genera Acinetobacter, Kaistia, Novosphingobium, Pseudomonas, and Xanthomonas. A positive effect of the studied microbial–plant association on the degradation of octadecane and especially phenanthrene in the soil has been revealed.


hydrocarbon-degrading bacteria phytoremediation of hydrocarbons microbial–plant association soddy-podzolic soil (Retisol) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Baboshin, B. P. Baskunov, Z. I. Finkelstein, E. L. Golovlev, and L. A. Golovleva, “The microbial transformation of phenanthrene and anthracene,” Microbiology (Moscow) 74, 303–309 (2005).CrossRefGoogle Scholar
  2. 2.
    GOST (State Standard) 12038-84: Agricultural Seeds. Methods for Determination of Germination (Izd. Standartov, Moscow, 2004) [in Russian].Google Scholar
  3. 3.
    G. V. Zaalishvili, G. A. Khatisashvili, D. Sh. Ugrkhelidze, M. Sh. Gordeziani, and G. I. Kvesitadze, “Plant potential for detoxification (review),” Appl. Biochem. Microbiol. 36, 443–451 (2000).CrossRefGoogle Scholar
  4. 4.
    J. H. Miller, Experiments in Molecular Genetics (Cold Spring Harbor Lab., New York, 1972).Google Scholar
  5. 5.
    A. A. Ovchinnikova, A. A. Vetrova, A. E. Filonov, and A. M. Boronin, “Phenanthrene biodegradation and the interaction of Pseudomonas putida BS3701 and Burkholderia sp. BS3702 in plant rhizosphere,” Microbiology (Moscow) 78, 433–439 (2009).CrossRefGoogle Scholar
  6. 6.
    E. P. Rozanova and T. N. Nazina, “Hydrocarbon-oxidizing bacteria and their activity in oil reservoirs,” Mikrobiologiya 51, 324–348 (1982) [in Russian].Google Scholar
  7. 7.
    A. M. Semenov, Ecology of Microorganisms, Ed. by A. I. Netrusov (Akademiya, Moscow, 2004), pp. 145–164 [in Russian].Google Scholar
  8. 8.
    T. A. Sokolova, “Specificity of soil properties in the rhizosphere: analysis of literature data,” Eurasian Soil Sci. 48, 968–980 (2015). doi 10.1134/S1064229315050099CrossRefGoogle Scholar
  9. 9.
    Yu. V. Titov, The Plant Group Effect (Nauka, Leningrad, 1978) [in Russian].Google Scholar
  10. 10.
    E. N. Tsyganova, D. G. Zvyagintsev, L. V. Lysak, and A. L. Stepanov, “The effect of a bacterial-humus preparation on the biological activity of soils,” Eurasian Soil Sci. 46, 788–792 (2013). doi 10.1134/S1064229313070107CrossRefGoogle Scholar
  11. 11.
    L. N. Anan’ina, O. V. Yastrebova, V. A. Demakov, and E. G. Plotnikova, “Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia,” Antonie van Leeuwenhoek 100 (2), 309–316 (2011). doi 10.1007/s10482-011-9580-3CrossRefGoogle Scholar
  12. 12.
    A. Cébron, B. Louvel, P. Faure, C. France-Lanord, Y. Chen, J. C. Murrell, and C. Leyval, “Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates,” Environ. Microbiol. 13 (3), 722–736 (2011). doi 10.1111/j.1462-2920.2010.02376.xCrossRefGoogle Scholar
  13. 13.
    J. L. Kirk, J. N. Klironomos, H. Lee, and J. T. Trevors, “The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil,” Environ. Pollut. 133, 455–465 (2005). doi 10.1016/j.envpol.2004.06.002CrossRefGoogle Scholar
  14. 14.
    I. Kuiper, E. L. Lagendijk, G. V. Bloemberg, and B. J. Lugtenberg, “Rhizoremediation: a beneficial plant microbe interaction,” Mol. Plant-Microbe Interact. 17, 6–15 (2004).CrossRefGoogle Scholar
  15. 15.
    PubChem Compound. pccompound.Google Scholar
  16. 16.
    J. A. Rentz, P. J. J. Alvarez, and J. L. Schnoor, “Repression of Pseudomonas putida phenanthrenedegrading activity by plant root extracts and exudates,” Environ. Microbiol. 6, 574–583 (2004). doi 10.1111/ j.1462-2920.2004.00589.xCrossRefGoogle Scholar
  17. 17.
    L. E. Rice and B. B. Hemmingsen, “Enumeration of hydrocarbon-degrading bacteria,” Methods in Biotechnol. 2, 99–109 (1997).Google Scholar
  18. 18.
    J. Seo, Y. Keum, and Q. Li, “Bacterial degradation of aromatic compounds,” Int. J. Environ. Res. Public Health 6, 278–309 (2009). doi 10.3390/ijerph6010278CrossRefGoogle Scholar
  19. 19.
    J. D. van Hamme, A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiol. Mol. Biol. Rev. 67, 503–549 (2003). doi 10.1128/MMBR.67.4.503-549.2003CrossRefGoogle Scholar
  20. 20.
    S. R. Wild and K. C. Jones, “Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock,” Sci. Total Environ. 119, 85–119 (1992). doi 10.1016/0048-9697(92)90258-TCrossRefGoogle Scholar
  21. 21.
    S. Yousaf, V. Andria, T. G. Reichenauer, K. Smalla, and A. Sessitsch, “Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment,” J. Hazard. Mater. 184, 523–532 (2010). doi 10.1016/j.jhazmat.2010.08.067CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Nazarov
    • 1
    Email author
  • E. A. Shestakova
    • 1
  • L. N. Anan’yina
    • 1
  1. 1.Institute of Ecology and Genetics of Microorganisms, Ural BranchRussian Academy of SciencesPermRussia

Personalised recommendations