Skip to main content
Log in

Nonspecific organic compounds in peat soils of the Subpolar Urals

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Specific features of organic matter, molecular composition and distribution of oxygen-containing nonspecific organic compounds (fatty acids, long-chain aliphatic alcohols, and ketones) were revealed in two peat soils on slopes of the Subpolar Urals: the eutrophic peat soil of the spring mire (Hemic Histosols) and the peat soil of a slope mire (Fibric Histosols). Compounds that can serve as molecular markers for some evolutionary stages of peats were determined for this area. Based on the data obtained, the most probable causes of differences in the composition of organic compounds in the peats studied were found to be the following: environmental conditions, water and mineral regime of bog, and differences in the composition of peat-forming plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Atlas of Climate and Hydrology of the Komi Republic (Drofa, Moscow, 1997) [in Russian].

  2. S. E. Vompersky, A. A. Sirin, A. A. Sal’nikov, O. P. Tsyganova, and N. A. Valyaeva, “Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia,” Contemp. Probl. Ecol. 44, 734–741 (2011).

    Article  Google Scholar 

  3. N. N. Goncharova, Candidate’s Dissertation in Biology (Petrozavodsk, 2007).

    Google Scholar 

  4. S. V. Degteva and N. N. Goncharova, “Protection of mires in the Komi Republic,” Izv. Komi Nauch. Tsentra, UrO, Ross. Akad. Nauk, No. 10, 29–35 (2012).

    Google Scholar 

  5. A. A. Dymov, E. Y. Milanovskii, and V. A. Kholodov, “Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals,” Eurasian Soil Sci. 44, 1212–1221 (2015). doi 10.1134/S1064229315110058

    Article  Google Scholar 

  6. O. S. Kubik, D. A. Kaverin, and A. V. Pastukhov, “Water-soluble organic compounds in the complex of peat permafrost soils of the southeast of Bol’shezemel’skaya tundra,” Proceedings of the XXI All-Russian Youth Scientific Conference “Topical Problems of Biology and Ecology” (Syktyvkar, 2014), pp. 53–61.

    Google Scholar 

  7. O. A. Mikhaylov, M. N. Miglovets, and S. V. Zagirova, “Vertical methane fluxes in mesooligotrophic boreal peatland in European Northeast Russia,” Contemp. Probl. Ecol. 44, 368–375 (2015). doi 10.1134/S1995425515030099

    Article  Google Scholar 

  8. V. M. Nikitin, A. V. Obolenskaya, and V. P. Shchegolev, Chemistry of Wood and Cellulose (Lesnaya Prom-st, Moscow, 1978) [in Russian].

    Google Scholar 

  9. A. V. Pastukhov and D. A. Kaverin, “Ecological state of peat plateaus in northeastern European Russia,” Russ. J. Ecol. 44, 125–132 (2016). doi 10.1134/ S1067413616010100

    Article  Google Scholar 

  10. Field Guide for Classification of Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  11. S. B. Selyanina, L. N. Parfenova, M. V. Trufanova, K. G. Bogolitsyn, T. V. Sokolova, V. P. Strigutskii, V. S. Pekhtereva, A. E. Tomson, A. R. Tsyganov, M. V. Bogdanov, and E. V. Mal’tseva, “The extraction of peat from Subarctic zone by organic solvents,” Khim. Nauki, Fundam. Issled., No. 4, 340–344 (2013).

    Google Scholar 

  12. O. V. Serebrennikova, Yu. I. Preis, P. B. Kadychagov, and E. V. Gulaya, “Hydrocarbon composition of the organic matter of peats in the south of western Siberia,” Solid Fuel Chem. 44, 324–334 (2010).

    Article  Google Scholar 

  13. O. V. Serebrennikova, E. V. Gulaya, E. B. Strel’nikova, P. B. Kadychagov, Y. I. Preis, and M. A. Duchko, “Chemical composition of lipids of typical plants accumulating in peats in oligotrophic mires of the forest zone of Western Siberia,” Khim. Rastit. Syr’ya, No. 1, 257–262 (2014).

    Google Scholar 

  14. O. V. Serebrennikova, E. B. Strel’nikova, and Yu. I. Preis, “Specific composition of lipids in upper and lower peat bogs of the south of Tomsk oblast,” Izv. Tosmk. Politekh. Univ. 322 (3), 77–82 (2013).

    Google Scholar 

  15. V. V. Startsev, E. V. Zhangurov, and A. A. Dymov, “The annual temperature dynamics of soil organogenic horizons of the Subpolar Ural,” Proc. Komi Science Centre of the Ural Division of the Russian Academy of Sciences, No. 44, 28–35 (2016).

    Google Scholar 

  16. E. B. Strel’nikova, O. V. Serebrennikova, and Y. I. Preis, “Oxygen-containing organic compounds of the bituminous components of high-moor peat from the south of Western Siberia,” Solid Fuel Chem. 44, 85–91 (2014). doi 10.3103/S0361521914020128

    Article  Google Scholar 

  17. Theory and Practice of Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

  18. Peat Resource of the Komi Republic (Syktyvkar, 2000) [in Russian].

  19. N. A. Shnyrev, Candidate’s Dissertation in Biology (Moscow, 2016).

    Google Scholar 

  20. P. Borga, M. Nilsson, and A. Tunlind, “Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis,” Soil Biol. Biochem. 44 (7), 841–1848 (1994). doi 10.1016/0038-0717(94)90300-X

    Article  Google Scholar 

  21. A. G. Borrego, V. Lopez-Dias, and J. Urbancyk, “Relationship between the vegetation and the biomarkers and palynological assemblages in Austrian mires (N Spain),” 26th International Meeting on Organic Geochemistry, Abstracts of Papers (Costa Adeje, 2013), Vol. 1, pp. 318–319.

    Google Scholar 

  22. A. A. Dymov, E. V. Zhangurov, and F. Hagedorn, “Soil organic matter composition along altitudinal gradients in permafrost affected soils of the Subpolar Ural Mountains,” Catena 44, 140–148 (2015). doi 10.1016/j.catena. 2015.03.020

    Article  Google Scholar 

  23. G. Eglinton and R. J. Hamilton, “Leaf epicuticular waxes,” Science 44, 1322–1335 (1967).

    Article  Google Scholar 

  24. A. D. Graeme, J. K. Volkman, S. M. Barrett, J.-M. Leroi, and S. W. Jeffrey, “Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae),” Phytochemistry 35 (1), 155–161 (1993). doi 10.1016/S0031-9422(00)90525-9

    Article  Google Scholar 

  25. G. T. Hill, N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, and E. B. Nelson, “Methods for assessing the composition and diversity of soil microbial communities,” Appl. Soil Ecol., 25–36 (2000). doi 10.1016/S0929–1393(00)00069-X

    Google Scholar 

  26. M. N. Hogberg, “Discrepancies between ergosterol and the phospholipid fatty acid 18: 2 <omega> 6, 9 as biomarkers for fungi in boreal forest soils,” Soil Biol. Biochem. 44, 3431–3435 (2006). doi 10.1016/j.soilbio. 2006.06.002

    Article  Google Scholar 

  27. X. Huang, P. A. Meyers, J. Xue, X. Wang, and L. Zheng, “Cryptic abundance of long-chain iso and anteiso alkanes in the Dajiuhu peat deposit, central China,” Org. Geochem. 44, 137–139 (2014). doi 10.1016/j.orggeochem.2013.11.011

    Article  Google Scholar 

  28. A. Huguet, A. J. Francez, M. D. Jusselme, C. Fosse, and S. A. Derenne, “Climatic chamber experiment to test the short term effect of increasing temperature on branched GDGT distribution in Sphagnum peat,” Org. Geochem. 44, 109–112 (2014). doi 10.1016/j.orggeochem. 2014.05.010

    Article  Google Scholar 

  29. L. Jin, Y. Son, J. L. DeForest, Y. J. Kang, W. Kim, and H. Chung, “Single-walled carbon nanotubes alter soil microbial community composition,” Sci. Total Environ. 466–467, 533–538 (2014). doi 10.1016/j.scitotenv. 2013.07.035

    Article  Google Scholar 

  30. R. G. Joergensen and F. Wichern, “Quantitative assessment of the fungal contribution to microbial tissue in soil,” Soil Biol. Biochem. 44, 2977–2991 (2008). doi 10.1016/j.soilbio.2008.08.017

    Article  Google Scholar 

  31. A. Kaur, A. Chaudhary, Kaur Amarjeet, R. Choudhary, and R. Kaushik, “Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem,” Curr. Sci. 89 (7), 1103–1112 (2005).

    Google Scholar 

  32. S. E. Leckie, “Methods of microbial community profiling and their application to forest soils,” For. Ecol. Manage. 44, 88–106 (2005). doi 10.1016/ j.foreco.2005.08.007

    Article  Google Scholar 

  33. V. Lopez-Dias, C. G. Blanco, A. Bechtel, W. Pittmann, and A. G. Borrego, “N Spain),” Org. Geochem. 44, 7–10 (2013). doi 10.1016/j.coal.2013.04.006

    Article  Google Scholar 

  34. S. M. Mudge and C. E. Norris, “Lipid biomarkers in the Conwy Estuary (North Wales, U. K.): a comparison between fatty alcohols and sterols,” Mar. Chem. 44, 61–84 (1997). doi 10.1016/S0304–4203(97)00010–8

    Article  Google Scholar 

  35. J. E. Ortiz, L. Moreno, and T. A. Torres, “220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis,” Org. Geochem. 44, 85–97 (2013).

    Article  Google Scholar 

  36. K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, “Effect of nutrient limitation on fatty acid and lipid content of marine microalgae,” J. Physiol. 44, 972–979 (1994). doi 10.1111/j.0022–3646.1994.00972.x

    Google Scholar 

  37. W. F. Rogge, P. M. Medeiros, and B. R. T. Simoneit, “Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study,” Atmos. Environ. 44, 8183–8204 (2007). doi 10.1016/j.atmosenv.2007.06.030

    Article  Google Scholar 

  38. S. Sjogersten and P. Wookey, “Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland,” Soil Biol. Biochem. 44, 1633–1646 (2003). doi 10.1016/S0038–0717(02)00147–5

    Google Scholar 

  39. J. van Winden, G. Reichart, H. Talbot, N. McNamara, A. Benthien, and J. S. Damst, “Influence of temperature on methane cycling and methanotrophrelated biomarkers in peat moss,” 25th International Meeting on Organic Geochemistry, Abstracts of Papers (Interlaken, 2011), p. 88. doi 10.1016/j.gca.2011.10.026

    Google Scholar 

  40. M. I. Venkatesan, E. Ruth, P. S. Rao, B. N. Nath, and B. R. Rao, “Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean,” Appl. Geochem. 44, 845–861 (2003).

    Article  Google Scholar 

  41. Z. Wang, C. Yang, F. Kelly-Hooper, B. P. Hollebone, X. Peng, C. E. Brown, M. Landriault, J. Sun, and Z. Yang, “Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments,” J. Chromatogr. A 44, 1174–1191 (2009). doi 10.1016/j.chroma.2008.12.036

    Article  Google Scholar 

  42. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  43. L. Zellis, “Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review,” Biol. Fertil. Soils 44, 111–129 (1999). doi 10.1007/s003740050533

    Article  Google Scholar 

  44. Y. Zheng, P. Cheng, and Q. Li, “Biomarker evidence for climate impacts on microbial processes in Tibetan plateau peats,” 26th International Meeting on Organic Geochemistry, Abstracts of Papers (Costa Adeje, 2013), Vol. 1, pp. 302–303.

    Google Scholar 

  45. S. A. Zimov, S. P. Davydov, G. M. Zimova, A. I. Davydova, E. A. G. Schuur, K. Dutta, and F. S. Chapin, “Permafrost carbon: stock and decomposability of a globally significant carbon pool,” Geophys. Res. Lett. 44, L20502 (2006). doi 10.1029/2006GL027484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Nizovtsev, V.A. Kholodov, V.A. Ivanov, Yu.R. Farkhodov, A.A. Dymov, 2017, published in Pochvovedenie, 2017, No. 9, pp. 1090–1097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizovtsev, N.A., Kholodov, V.A., Ivanov, V.A. et al. Nonspecific organic compounds in peat soils of the Subpolar Urals. Eurasian Soil Sc. 50, 1048–1054 (2017). https://doi.org/10.1134/S1064229317070080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317070080

Keywords

Profiles

  1. A. A. Dymov