Skip to main content
Log in

Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha–1 yr–1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha–1 yr–1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha–1 yr–1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha–1 yr–1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH +4 -N; 2) in microaggregate (53–250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha–1 yr–1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Allison and J. D. Jastrow, “Activities of extracellular enzymes in physically isolated fractions of restored grassland soils,” Soil Biol. Biochem. 38 (11), 3245–3256 (2006).

    Article  Google Scholar 

  2. C. J. Alster, D. P. German, Y. Lu, and S. D. Allison, “Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland,” Soil Biol. Biochem. 64 (9), 68–79 (2013).

    Article  Google Scholar 

  3. M. P. Babaev and N. I. Orujova, “Assessment of the biological activity of soils in the subtropical zone of Azerbaijan,” Eurasian Soil Sci. 42 (10), 1163–1169 (2009).

    Article  Google Scholar 

  4. E. M. Bach and K. S. Hofmockel, “Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity,” Soil Biol. Biochem. 69 (1), 54–62 (2014).

    Article  Google Scholar 

  5. Y. Bai, J. Wu, C. M. Clark, et al., “Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands,” Global Change Biol. 16 (1), 358–372 (2010).

    Article  Google Scholar 

  6. P. Baldrian, J. Voríšková, P. Dobiášová, V. Merhautová, L. Lisá, and V. Valášková, “Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil,” Plant Soil 338 (1–2), 111–125 (2011).

    Article  Google Scholar 

  7. J. Bi, N. Zhang, Y. Liang, H. Yang, and K. Ma, “Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe,” J. Plant Ecol. 5 (3), 320–329 (2012).

    Article  Google Scholar 

  8. S. A. Billings, C. M. Brewer, and B. L. Foster, “Incorporation of plant residues into soil organic matter fractions with grassland management practices in the North American Midwest,” Ecosystems 9 (5), 805–815 (2006). NH4+

    Article  Google Scholar 

  9. S. Bittman, T. A. Forge, and C. G. Kowalenko, “Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer,” Soil Biol. Biochem. 37 (4), 613–623 (2005).

    Article  Google Scholar 

  10. D. A. Bossio and K. M. Scow, “Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns,” Microb. Ecol. 35 (3–4), 265–278 (1998).

    Article  Google Scholar 

  11. T. M. Bowles, V. Acosta-Martínez, F. Calderón, and L. E. Jackson, “Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape,” Soil Biol. Biochem. 68 (1), 252–262 (2014).

    Article  Google Scholar 

  12. R. G. Burns, J. L. DeForest, J. Marxsen, et al., “Soil enzymes in a changing environment: current knowledge and future directions,” Soil Biol. Biochem. 58 (2), 216–234 (2013).

    Article  Google Scholar 

  13. R. Cahan, E. Hetzroni, M. Nisnevitch, and Y. Nitzan, “Purification and Identification of a novel leucine aminopeptidase from Bacillus thuringiensis israelensis,” Curr. Microbiol. 55 (5), 413–419 (2007).

    Article  Google Scholar 

  14. R. Cardelli, R. Levi-Minzi, A. Saviozzi, and R. Riffaldi, “Organically and conventionally managed soils: biochemical characteristics,” J. Sustainable Agric. 25 (2), 63–74 (2005).

    Article  Google Scholar 

  15. F. T. De Vries, E. Hoffland, N. van Eekeren, L. Brussaard, and J. Bloem, “Fungal/bacterial ratios in grasslands with contrasting nitrogen management,” Soil Biol. Biochem. 38 (8), 2092–2103 (2006).

    Article  Google Scholar 

  16. J. L. DeForest, D. R. Zak, K. S. Pregitzer, and A. J. Burton, “Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests,” Soil Sci. Soc. Am. J. 68 (1), 132–138 (2004).

    Article  Google Scholar 

  17. F. Demoling, D. Figueroa, and E. Bååth, “Comparison of factors limiting bacterial growth in different soils,” Soil Biol. Biochem. 39 (10), 2485–2495 (2007).

    Article  Google Scholar 

  18. F. Demoling, L. Ola Nilsson, and E. Bååth, “Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils,” Soil Biol. Biochem. 40 (2), 370–379 (2008).

    Article  Google Scholar 

  19. W. A. Dick, L. Cheng, and P. Wang, “Soil acid and alkaline phosphatase activity as pH adjustment indicators,” Soil Biol. Biochem. 32 (13), 1915–1919 (2000).

    Article  Google Scholar 

  20. E. T. Elliott, “Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils,” Soil Sci. Soc. Am. J. 50 (3), 627–633. 1986.

    Article  Google Scholar 

  21. Å. Frostegård and E. Bååth, “The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil,” Biol. Fertil. Soils. 22 (1–2), 59–65. 1996.

    Article  Google Scholar 

  22. J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, and C. J. Vöos-marty, “Nitrogen cycles: past, present, and future,” Biogeochemistry 70 (2), 153–226 (2004).

    Article  Google Scholar 

  23. D. P. German, M. N. Weintraub, A. S. Grandy, C. L. Lauber, Z. L. Rinkes, and S. D. Allison, “Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies,” Soil Biol. Biochem. 43 (7), 1387–1397 (2011).

    Article  Google Scholar 

  24. G. W. Gooday, in Biochemistry of Microbial Degradation (Springer-Verlag, Dordrecht, 1994), pp. 279–312.

    Book  Google Scholar 

  25. N. He, Q. Yu, R. Wang, Y. Zhang, Y. Gao, and G. Yu, “Enhancement of carbon sequestration in soil in the temperature grasslands of Northern China by addition of nitrogen and phosphorus,” PloS One 8 (10), 1002–1004 (2013).

    Google Scholar 

  26. D. Hiltbrunner, S. Zimmermann, S. Karbin, F. Hagedorn, and P. A. Niklaus, “Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture,” Global Change Biol. 18 (12), 3664–3671 (2012).

    Article  Google Scholar 

  27. S. E. Hobbie, “Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition,” Ecosystems 8 (6), 644–656 (2005).

    Article  Google Scholar 

  28. S. J. Horn, G. Vaaje-Kolstad, B. Westereng, and V. G. Eijsink, “Novel enzymes for the degradation of cellulose,” Biotechnol. Biofuels 5 (1), 1–13 (2012).

    Article  Google Scholar 

  29. S. Jagadamma and R. Lal, “Distribution of organic carbon in physical fractions of soils as affected by agricultural management,” Biol. Fertil. Soils 46 (6), 543–554 (2010).

    Article  Google Scholar 

  30. J. D. Jastrow, J. E. Amonette, and V. L. Bailey, “Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration,” Clim. Change 80 (1–2), 5–23 (2007).

    Article  Google Scholar 

  31. P. N. Kamble, J. Rousk, S. D. Frey, and E. Bååth, “Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil,” Soil Biol. Biochem. 59 (2), 32–37 (2013).

    Article  Google Scholar 

  32. L. Kang, X. Han, Z. Zhang, and O. J. Sun, “Grassland ecosystems in China: review of current knowledge and research advancement,” Phil. R. Soc. B 362 (1482), 997–1008 (2007).

    Article  Google Scholar 

  33. B. L. Keeler, S. E. Hobbie, and L. E. Kellogg, “Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition,” Ecosystems 12 (1), 1–15 (2009).

    Article  Google Scholar 

  34. K. Y. Khan, A. I. Pozdnyakov, and B. K. Son, “Structure and stability of soil aggregates,” Eurasian Soil Sci. 40 (4), 409–414 (2007).

    Article  Google Scholar 

  35. J. Kohler, G. Tortosa, J. Cegarra, F. Caravaca, and A. Roldán, “Impact of DOM from composted “alperujo” on soil structure, AM fungi, microbial activity and growth of Medicago sativa,” Waste Manage. 28 (8), 1423–1431 (2008).

    Google Scholar 

  36. A. Y. Kong, K. Hristova, K. M. Scow, and J. Six, “Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments,” Soil Biol. Biochem. 42 (9), 1523–1533 (2010).

    Article  Google Scholar 

  37. A. Y. Kong, K. M. Scow, A. L. Córdova-Kreylos, W. E. Holmes, and J. Six, “Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems,” Soil Biol. Biochem. 43 (1), 20–30 (2011).

    Article  Google Scholar 

  38. A. Kulmatiski and K. H. Beard, “Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure,” Soil Biol. Biochem. 43 (4), 823–830 (2011).

    Article  Google Scholar 

  39. D. S. LeBauer and K. K. Treseder, “Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed,” Ecology. 89 (2), 371–379 (2008).

    Article  Google Scholar 

  40. W. Liu, L. Jiang, S. Hu, L. Li, L. Liu, and S. Wan, “Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe,” Soil Biol. Biochem. 72 (6), 116–122 (2014).

    Article  Google Scholar 

  41. X. Liu, L. Duan, J. Mo, E. Du, J. Shen, X. Lu, Y. Zhang, X. Zhou, C. He, and F. Zhang, “Nitrogen deposition and its ecological impact in China: an overview,” Environ. Pollut. 159 (10), 2251–2264 (2011).

    Article  Google Scholar 

  42. X. Liu, Y. Zhang, W. Han, et al., “Enhanced nitrogen deposition over China,” Nature 494 (7438), 459–462 (2013).

    Article  Google Scholar 

  43. F. M. Lü, X. T. Lü, W. Liu, X. Han, G. M. Zhang, D. L. Kong, and X. G. Han, “Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China,” Biol. Fertil. Soils 47 (2), 187–196 (2011).

    Article  Google Scholar 

  44. S. Malherbe and T. E. Cloete, “Lignocellulose biodegradation: fundamentals and applications,” Rev. Environ. Sci. Biotechnol. 1 (2), 105–114 (2002).

    Article  Google Scholar 

  45. N. W. Mungai, P. P. Motavalli, R. J. Kremer, and K. A. Nelson, “Spatial variation of soil enzyme activities and microbial functional diversity in temperate alley cropping systems,” Biol. Fertil. Soils 42 (2), 129–136 (2005).

    Article  Google Scholar 

  46. Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (U.S. Department of Agriculture Washington DC, 1954), pp. 18–19.

  47. J. Rousk, P. C. Brookes, and E. Bååth, “Fungal and bacterial growth responses to N fertilization and pH in the 150-year “Park Grass” UK grassland experiment,” FEMS Microbiol. Ecol. 76 (1), 89–99 (2011).

    Article  Google Scholar 

  48. K. R. Saiya-Cork, R. L. Sinsabaugh, and D. R. Zak, “The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil,” Soil Biol. Biochem. 34 (9), 1309–1315 (2002).

    Article  Google Scholar 

  49. H. Sarula Chen, X. Hou, L. Ubugunov, O. Vishnyakova, X. Wu, et al., “Carbon storage under different grazing management in the typical steppe,” Eurasian Soil Sci. 47 (11), 1152–1160 (2014).

    Article  Google Scholar 

  50. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. S. Tulina, “Mineralization of organic matter and the carbon sequestration capacity of zonal soils,” Eurasian Soil Sci. 41 (7), 717–730 (2008).

    Article  Google Scholar 

  51. V. M. Semenov, L. A. Ivannikova, N. A. Semenova, A. K. Khodzhaeva, and S. N. Udal’tsov, “Organic matter mineralization in different soil aggregate fractions,” Eurasian Soil Sci. 43 (2), 141–148 (2010).

    Article  Google Scholar 

  52. A. Sessitsch, A. Weilharter, M. H. Gerzabek, H. Kirchmann, and E. Kandeler, “Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment,” Appl. Environ. Microbiol. 67 (9), 4215–4224 (2001).

    Article  Google Scholar 

  53. R. C. Shen, M. Xu, Y. C. Gang, Y. Shen, and S. Q. Wan, “Soil microbial responses to experimental warming and nitrogen addition in a temperate steppe of northern China,” Pedosphere 24 (4), 427–436 (2014).

    Article  Google Scholar 

  54. R. L. Sinsabaugh, M. M. Carreiro, and D. A. Repert, “Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss,” Biogeochemistry 60 (1), 1–24 (2002).

    Article  Google Scholar 

  55. J. Six, E. T. Elliott, and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32 (14), 2099–2103 (2000).

    Article  Google Scholar 

  56. R. Spaccini and A. Piccolo, “Effects of field managements for soil organic matter stabilization on water-stable aggregate distribution and aggregate stability in three agricultural soils,” J. Geochem. Explor. 129 (6), 45–51 (2013).

    Article  Google Scholar 

  57. R. Spaccini and A. Piccolo, in Carbon Sequestration in Agricultural Soils. A Multidisciplinary Approach to Innovative Methods (Springer-Verlag, Berlin, 2012), pp. 61–105.

    Book  Google Scholar 

  58. S. Steinbeißs, H. Beßler, C. Engels, et al., “Plant diversity positively affects short-term soil carbon storage in experimental grasslands,” Global Change Biol. 14 (12), 2937–2949 (2008).

    Article  Google Scholar 

  59. C. J. Stevens, N. B. Dise, J. O. Mountford, and D. J. Gowing, “Impact of nitrogen deposition on the species richness of grasslands,” Science 303 (5665), 1876–1879 (2004).

    Article  Google Scholar 

  60. M. Stursova, C. L. Crenshaw, and R. L. Sinsabaugh, “Microbial responses to long-term N deposition in a semiarid grassland,” Microb. Ecol. 51 (1), 90–98 (2006).

    Article  Google Scholar 

  61. M. Štursová, L. Žifcáková, M. B. Leigh, R. Burgess, and P. Baldrian, “Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers,” FEMS Microbiol. Ecol. 80 (3), 735–746 (2012).

    Article  Google Scholar 

  62. K. N. Suding, S. L. Collins, L. Gough, et al., “Functional-and abundance-based mechanisms explain diversity loss due to N fertilization,” Proc. Natl. Acad. Sci. U.S.A. 102 (12), 4387–4392 (2005).

    Article  Google Scholar 

  63. K. K. Treseder, “Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies,” Ecol. Lett. 11 (10), 1111–1120 (2008).

    Article  Google Scholar 

  64. M. G. van Der Heijden, R. D. Bardgett, and N. M. van Straalen, “The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems,” Ecol. Lett. 11 (3), 296–310 (2008).

    Article  Google Scholar 

  65. M. P. Waldrop and D. R. Zak, “Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon,” Ecosystems 9 (6), 921–933 (2006).

    Article  Google Scholar 

  66. M. P. Waldrop, D. R. Zak, R. L. Sinsabaugh, M. Gallo, and C. Lauber, “Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity,” Ecol. Appl. 14 (4), 1172–1177 (2004).

    Article  Google Scholar 

  67. R. Z. Wang, T. R. Filley, Z. W. Xu, X. Wang, M. H. Li, Y. G. Zhang, W. T. Luo, and Y. Jiang, “Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia,” Plant Soil 381 (1–2), 323–336 (2014).

    Article  Google Scholar 

  68. C. Wei, H. Zheng, Q. Li, et al., “Nitrogen addition regulates soil nematode community composition through ammonium suppression,” PloS One 7 (8), 1601–1620 (2012).

    Google Scholar 

  69. K. A. Whittinghill, W. S. Currie, D. R. Zak, A. J. Burton, and K. S. Pregitzer, “Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: analysis of field observations with an ecosystem model,” Ecosystems 15 (3), 450–461 (2012).

    Article  Google Scholar 

  70. Z. W. Xu, S. Q. Wan, H. Y. Ren, X. G. Han, and Y. Jiang, “Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands,” J. Arid Environ. 87 (12), 103–109 (2012).

    Article  Google Scholar 

  71. Z. Xu, S. Wan, G. Zhu, H. Ren, and X. Han, “The influence of historical land use and water availability on grassland restoration,” Restor. Ecol. 18 (1), 217–225 (2010).

    Article  Google Scholar 

  72. H. Yao, D. Bowman, T. Rufty, and W. Shi, “Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: implications for soil enzyme activities and organic matter decomposition,” Soil Biol. Biochem. 41 (7), 1425–1432 (2009).

    Article  Google Scholar 

  73. Q. Yu, Q. Chen, J. Elser, et al., “Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability,” Ecol. Lett. 13 (11), 1390–1399 (2010).

    Article  Google Scholar 

  74. Q. Yu, H. Wu, N. He, et al., “Testing the growth rate hypothesis in vascular plants with above-and belowground biomass,” PloS One 7 (3), e32162 (2012).

    Article  Google Scholar 

  75. E. S. Zavaleta, M. R. Shaw, N. R. Chiariello, B. D. Thomas, E. E. Cleland, C. B. Field, and H. A. Mooney, “Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition,” Ecol. Monogr. 73 (4), 585–604 (2003).

    Article  Google Scholar 

  76. L. H. Zeglin, M. Stursova, R. L. Sinsabaugh, and S. L. Collins, “Microbial responses to nitrogen addition in three contrasting grassland ecosystems,” Oecologia 154 (2), 349–359 (2007).

    Article  Google Scholar 

  77. L. Zelles, “Phospholipid fatty acid profiles in selected members of soil microbial communities,” Chemosphere 35 (1–2), 275–294 (1997).

    Article  Google Scholar 

  78. N. Zhang, W. Xu, X. Yu, D. Lin, S. Wan, and K. Ma, “Impact of topography, annual burning, and nitrogen addition on soil microbial communities in a semiarid grassland,” Soil Sci. Soc. Am. J. 77 (4), 1214–1224 (2013).

    Article  Google Scholar 

  79. X. Zhou, C. Chen, Y. Wang, Z. Xu, H. Han, L. Li, and S. Wan, “Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland,” Sci. Total Environ. 444 (2), 552–558 (2013).

    Article  Google Scholar 

  80. C. Ziter and A. S. MacDougall, “Nutrients and defoliation increase soil carbon inputs in grassland,” Ecology 94 (1), 106–116 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Wang.

Additional information

Published in Russian in Pochvovedenie, 2016, No. 10, pp. 1218–1229.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Sheng, L., Wang, Z. et al. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia. Eurasian Soil Sc. 49, 1149–1160 (2016). https://doi.org/10.1134/S1064229316100124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316100124

Keywords

Navigation