Skip to main content
Log in

Chemical composition of water-soluble fraction in soils on glaciolacustrine deposits of the Russian Plain

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The behavior of some chemical elements was studied in soils and their liquid phase. Two reference soil profiles on glaciolacustrine clays (soddy-eluvial-metamorphic soil) and sands (soddy podzol) were investigated on the Russian Plain. A colloidal fraction (particles <1 μm) was isolated with deionized hot water from a soil sample of 30 g at the soil: water ratio of 1: 10. The suspension was mixed for 6 h, settled for 24 h, and filtrated using a membrane filter (<1 μm). The soil sample and its water-soluble fraction (WSF) were analyzed by mass spectrometry with inductively coupled plasma. The chemical characteristics of the extracted liquid phase of the soil reflect its water-soluble component properties. The comparison of the data obtained with the results of the analysis for the whole soil allows assessment of a share of easily mobile and difficultly mobile forms of chemical compounds. This is the necessary basis for the development of a model describing the transport of metals in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Gagarina, N. N. Matinyan, L. S. Schastnaya, and G. A. Kasatkina, Soils and the Soil Cover of Northwestern Russia (St. Petersburg State University, St. Petersburg, 1995) [in Russian].

    Google Scholar 

  2. V. V. Dobrovol’skii, L. V. Aleshchukin, E. V. Filatova, et al., “Mobile forms of heavy metals in soil as a factor for formation of mass flows of metals,” in Heavy Metals in the Environment (Pushchino, 1997), pp. 5–14.

    Google Scholar 

  3. T. O. Zubkova and L. O. Karpachevskii, Matrix Structure of Soils (Rusaki, Moscow, 2001) [in Russian].

    Google Scholar 

  4. E. I. Karavanova and E. A. Timofeeva, “Chemical composition of solutions in macro-and micropores in the upper horizons of soils in the Central Forest State Biosphere Reserve,” Eurasian Soil Sci. 42 (12), 1357–1363 (2009).

    Article  Google Scholar 

  5. Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  6. P. A. Kryukov, Rock, Soil, and Clay Solutions (Nauka, Novosibirsk, 1971) [in Russian].

    Google Scholar 

  7. M. S. Malinina and G. V. Motuzova, “Methods to obtain soil solutions for soil chemical monitoring,” in Physical and Chemical Analysis of Soils (Moscow State University, Moscow, 1994), pp. 101–130.

    Google Scholar 

  8. N. N. Matinyan, Soil Formation on Varved Clay of Glaciolacustrine Plains in Northwestern Russia (St. Petersburg State University, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  9. G. A. Oleinikova and E. G. Panova, “Information resources of analysis of nanofractions of soils,” Vestn. S.-Peterb. Gos. Univ., No. 3, 60–66 (2007).

    Google Scholar 

  10. G. A. Oleinikova, E. G. Panova, V. A. Shishlov, and L. I. Rusanova, RF Patent 2370764 (27 December 2007).

    Google Scholar 

  11. D. S. Orlov, Soil Chemistry (Moscow State University, Moscow, 1985) [in Russian].

    Google Scholar 

  12. D. L. Pinskii and D. N. Kurochkina, “Evolution of the concept of soil adsorption capacity,” in Soil Processes and Spatio-Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 295–312.

    Google Scholar 

  13. O. F. Putikov, Basics of the Theory of Nonlinear Geoelectrochemical Survey Methods (St. Petersburg University of the Humanities and Social Sciences, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  14. E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, et al., Interpretation of Geochemical Data (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  15. S. V. Sokolov, L. G. Marchenko, and S. S. Shevchenko, Tentative Methodological Recommendations for Geochemical Survey on the Closed and Semi-Closed Territories (Russian Scientific Research Geological Institute, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  16. A. P. Solovov, A. Ya. Arkhipov, V. A. Bugrov, et al., Handbook on the Geochemical Prospecting of Mineral Resources (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  17. S. Ya. Trofimov and E. I. Karavanova, Liquid Phase of Soils: Manual for Some Chapters of the Course on Soil Chemistry (Moscow State University, Moscow, 2009) [in Russian].

    Google Scholar 

  18. G. N. Fedotov, O. N. Bystrova, and E. A. Martynkina, “On the nanostructural organization of soils,” Dokl. Chem. 425 (2), 69–72 (2009).

    Article  Google Scholar 

  19. G. N. Fedotov and G. V. Dobrovol’skii, “Colloidchemical model for describing some soil processes,” Eurasian Soil Sci. 39 (5), 477–485 (2006).

    Article  Google Scholar 

  20. G. N. Fedotov, G. V. Dobrovol’skii, V. I. Putlyaev, E. I. Pakhomov, A. I. Kuklin, and A. Kh. Islamov, “Physicochemical principles of the fractal organization of soil colloids,” Eurasian Soil Sci. 40 (7), 740–746 (2007).

    Article  Google Scholar 

  21. E. V. Shein and B. A. Devin, “Current problems in the study of colloidal transport in soil,” Eurasian Soil Sci. 40 (4), 399–408 (2007).

    Article  Google Scholar 

  22. Elementary Pedogenic Processes: An Experience in Conceptual Analysis, Characterization, and Systematization (Nauka, Moscow, 1992), pp. 31–32.

  23. F. Adams, C. Burmester, N. V. Hue, and F. L. Long, “Comparison of column-displacement and centrifuge methods for obtaining soil solution,” Soil Sci. Am. J. 44, 733–735 (1980). doi 10.2136/sssaj1980. 03615995004400040014x

    Article  Google Scholar 

  24. D. M. Bonito, PhD thesis (University of Nottingham, Nottingham, UK, 2005).

    Google Scholar 

  25. B. Cances, M. Ponthien, M. Casterc-Rouelle, E. Aubry, and M. F. Benedetti, “Metal ions speciation in a soil and its solution: experimental data and model results,” Geoderma 113, 341–355 (2003). doi 10.1016/S0016-7061(02)00369-5

    Article  Google Scholar 

  26. Y. H. El-Farhan, N. M. DeNovio, J. S. Herman, and G. M. Hornberger, “Mobilization and transport of soil particles during infiltration experiments in an agricultural field, Shenandoah Valley, Virginia,” Environ. Sci. Technol. 34, 3555–3559 (2000). doi 10.1021/es991099g

    Article  Google Scholar 

  27. M. E. Essington, Soil and Water Chemistry. An Integrative Approach (CRC Press, Boca Raton, FL, 2004).

    Google Scholar 

  28. R. Giesler, U. S. Lundstrom, and H. Grip, “Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation,” Eur. J. Soil Sci. 47 (3), 395–405 (1996). doi 10.1111/j.1365-2389.1996.tb01413.x

    Article  Google Scholar 

  29. D. I. Kaplan, P. M. Bertch, D. C. Adriano, and W. P. Miller, “Soil-born mobile colloids as influenced by water flow and organic carbon,” Environ. Sci. Technol. 27, 1193–1200 (1993). doi 10.1021/es00043a021

    Article  Google Scholar 

  30. J. M. Séquaris, E. Klumpp, and H. Vereecken, “Colloidal properties and potential release of water-dispersible colloids in an agricultural soil depth profile,” Geoderma 193–194, 94–101 (2013). http://dx.doi.org/doi 10.1016/j.geoderma.2012.10.01410.1016/j.geoderma.2012. 10.014

    Article  Google Scholar 

  31. A. K. Seta and A. D. Karathanasis, “Stability and transportability of water-dispersible soil colloids,” Soil Sci. Soc. Am. J. 61, 604–611 (1997). doi 10.2136/sssaj1997.03615995006100020034x

    Article  Google Scholar 

  32. J. Siemens, K. Ilg, F. Lang, and M. Kaupenjohann, “Adsorption controls mobilization of colloids and leaching of dissolved phosphorus,” Eur. J. Soil Sci. 55, 253–263 (2004). doi 10.1046/j.1365-2389.2004.00596.x

    Article  Google Scholar 

  33. F. van Oort, A. G. Jongmans, L. Citeau, I. Lamy, and P. Chevallier, “Microscale Zn and Pb distribution patterns in subsurface soil horizons: an indication for metal transport dynamics,” Eur. J. Soil Sci. 57, 154–166 (2006). doi 10.1111/j.1365-2389.2005.00725.x

    Article  Google Scholar 

  34. M. A. Wilson, N. H. Tran, A. S. Milev, G. S. K. Kannangara, H. Volk, and G. Q. Max Lu, “Nanomaterials in soils,” Geoderma 146, 291–302 (2008). http://dx.doi.org/doi 10.1016/j.geoderma.2008.06.004

    Article  Google Scholar 

  35. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Panova.

Additional information

Original Russian Text © E.G. Panova, G.A. Oleinikova, N.N. Matinyan, K.A. Bakhmatova, 2016, published in Pochvovedenie, 2016, No. 6, pp. 679–689.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, E.G., Oleinikova, G.A., Matinyan, N.N. et al. Chemical composition of water-soluble fraction in soils on glaciolacustrine deposits of the Russian Plain. Eurasian Soil Sc. 49, 622–631 (2016). https://doi.org/10.1134/S1064229316060089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316060089

Keywords

Navigation