Eurasian Soil Science

, Volume 49, Issue 6, pp 705–713 | Cite as

Promising approaches to the purification of soils and groundwater from hydrocarbons (A Review)

  • Yu. N. VodyanitskiiEmail author
  • S. Ya. Trofimov
  • S. A. Shoba
Degradation, Rehabilitation, and Conservation of Soils


Soils and waters are affected by oil spills in the course of oil production and hydrocarbon leakages because of the corrosion of underground reservoirs, as well as the filtration of hydrocarbons from the tailing ponds formed during the extraction of oil from oil sands. The conventional technology for the withdrawal of contaminated water and its purification on the surface is low-efficient and expensive. New approaches are proposed for the in situ purification of soils and groundwater. To accelerate the oxidation, active substances atypical for the supergenesis zone are used: peroxides of metals and hydrogen. The efficiency of hydrogen peroxide significantly increases when the oxidation is catalyzed by Fe2+ or Fe3+ (Fenton reaction). The effects of Fe(III), sulfates, and carbon dioxide as electron acceptors are studied under anaerobic conditions (with oxygen deficit).


oil products aromatic hydrocarbons biological remediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Avetov and E. A. Shishkonakova, “Oil pollution of the mires of Western Siberia,” Priroda (Moscow), No. 11, 14–24 (2010).Google Scholar
  2. 2.
    E. S. Vasil’konov, Candidate’s Dissertation in Biology (Moscow, 2009).Google Scholar
  3. 3.
    Y. N. Vodyanitskii, “Effect of reduced iron on the degradation of chlorinated hydrocarbons in contaminated soil and ground water: a review of publications,” Eurasian Soil Sci. 47 (2), 119–133 (2014). doi 10.1134/S1064229314020136CrossRefGoogle Scholar
  4. 4.
    Y. N. Vodyanitskii, “Artificial permeable redox barriers for purification of soil and ground water: a review of publications,” Eurasian Soil Sci. 47 (10), 1058–1068 (2014). doi 1134/S1064229314080134CrossRefGoogle Scholar
  5. 5.
    Yu. N. Vodyanitskii, S. Ya. Trofimov, and S. A. Shoba, “The influence of Fe(III) on oil biodegradation in excessively moistened soils and sediments,” Eurasian Soil Sci. 48 (7), 764–772 (2015). doi 10.1134/S1064229315070121CrossRefGoogle Scholar
  6. 6.
    G. A. Zavarzin and N. N. Kolotilova, Introduction to Natural Microbiology (Universitet, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    I. S. Kaurichev and D. S. Orlov, Redox Processes and Their Role in Genesis and Fertility of Soils (Kolos, Moscow, 1982) [in Russian].Google Scholar
  8. 8.
    A. E. Kuznetsov, N. B. Gradova, S. V. Lushnikov, M. Engelharpt, T. Whaisser, and M. V. Chebotareva, Applied Ecological Biotechnology (BINOM, Moscow, 2013), Vol. 1.Google Scholar
  9. 9.
    O. V. Lisovitskaya, Candidate’s Dissertation in Biology (Moscow, 2008).Google Scholar
  10. 10.
    N. P. Solntseva, Oil Extraction and Geochemistry of Natural Landscapes (Moscow State University, Moscow, 1998) [in Russian].Google Scholar
  11. 11.
    G. Sposito, The Thermodynamics of Soil Solutions (Oxford University Press, New York, 1981).Google Scholar
  12. 12.
    I. I. Tolpeshta, S. Ya. Trofimov, M. I. Erkenova, T. A. Sokolova, A. L. Stepanov, L. V. Lysak, and A. M. Lobanenkov, “Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat,” Eurasian Soil Sci. 48 (3), 314–324 (2015). doi 10.1134/S1064229315030126CrossRefGoogle Scholar
  13. 13.
    C. M. Aitken, D. M. Jones, M. J. Maguire, N. D. Gray, et al., “Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions,” Geochim. Cosmochim. Acta 109, 162–174 (2013).CrossRefGoogle Scholar
  14. 14.
    E. W. Allen, “Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objective,” J. Environ. Eng. 7, 123–138 (2008).CrossRefGoogle Scholar
  15. 15.
    R. T. Anderson and D. R. Lovley, “Ecology and biogeochemistry of in situ groundwater bio-remediation,” Adv. Microbiol. Ecol. 15, 289–350 (1997).CrossRefGoogle Scholar
  16. 16.
    R. T. Anderson and D. R. Lovley, “Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifer,” Biorem. J. 3, 121–135 (1999).CrossRefGoogle Scholar
  17. 17.
    R. T. Anderson, J. Rooney-Varga, and D. R. Lovley, “Anaerobic benzene oxidation in the Fe(III)-reducing zone of petroleum-contaminated aquifer,” Environ. Sci. Technol. 32, 1222–1229 (1998).CrossRefGoogle Scholar
  18. 18.
    R. Baciocchi, M. R. Boni, and L. Aprile, “TCE Fenton-like oxidation in soil,” J. Hazard. Mater. 107, 97–102 (2004).CrossRefGoogle Scholar
  19. 19.
    R. Baciocchi, M. R. Boni, and L. Aprile, “Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils,” J. Hazard. Mater. 96, 305–329 (2003).CrossRefGoogle Scholar
  20. 20.
    M. J. Baedecker, I. M. Cozzarelli, D. I. Siegel, P. C. Bennet, and R. P. Eganhouse, “Crude oil in a shallow sand and gravel aquifer. 3. Biochemical reactions and mass balance modeling in anoxic groundwater,” Appl. Geochem. 8, 569–586 (1993).CrossRefGoogle Scholar
  21. 21.
    V. V. Balashova and G. A. Zavarzin, “Anaerobic reduction of ferric iron by hydrogen bacteria,” Microbiol. 48, 635–639 (1980).Google Scholar
  22. 22.
    B. A. Bekins, F. D. Hosteller, W. N. Herkelrath, G. N. Delin, E. Warren, and H. I. Essaid, “Progression of methanogenic degradation of crude oil in the subsurface,” Environ. Geosci. 12, 139–152 (2005).CrossRefGoogle Scholar
  23. 23.
    D. J. Berwanger and J. F. Barker, “Aerobic biodegradation of aromatic and chlorinated hydrocarbons commonly detected in landfill leachates,” Water Pollut. Res. J. Can. 23, 460–475 (1988).Google Scholar
  24. 24.
    G. C. Bianchi-Mosquera, R. M. Allen-King, and D. M. Mackay, “Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound,” Ground Water Monit. Rem. 14, 120–128 (1994).CrossRefGoogle Scholar
  25. 25.
    D. R. Bond and D. R. Lovley, “Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones,” Environ. Microb. 4, 115–124 (2002).CrossRefGoogle Scholar
  26. 26.
    R. C. Borden, R. T. Goin, and C.-M. Kao, “Control of BTEX migration using a biologically enhanced permeable barrier,” Ground Water Monitor. Rem. 17, 70–80 (1997).CrossRefGoogle Scholar
  27. 27.
    D. P. Cassidy and R. L. Irvine, “Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil,” J. Hazard. Mater. 69, 25–39 (1999).CrossRefGoogle Scholar
  28. 28.
    F. Chapelle, P. M. Bradley, D. R. Lovley, and D. A. Vroblesky, “Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods,” Ground Water. 34, 691–698 (1996).CrossRefGoogle Scholar
  29. 29.
    J. D. Coates, D. J. Ellis, E. L. Blunt-Harris, C. V. Gaw, E. E. Roden, and D. R. Jovley, “Recovery of humicreducing bacteria from a diversity of environments,” Appl. Environ. Microbiol. 64 (4), 1504–1509 (1998).Google Scholar
  30. 30.
    I. M. Cozzarelli, M. J. Baedecker, R. P. Eganhouse, and D. F. Goerlitz, “Geochemical evolution of lowmolecular-weight organic acids derived from degradation of petroleum contaminants in groundwater,” Geochim. Cosmochim. Acta 58, 863–877 (1994).CrossRefGoogle Scholar
  31. 31.
    J. Dolfing, M. van Eekert, A. Seech, J. Vogan, and J. Mueller, “In situ chemical reduction (ISCR) technologies: significance of low Eh reactions,” Soil Sediment. Contam. 17, 63–74 (2008).CrossRefGoogle Scholar
  32. 32.
    H. I. Essaid, B. A. Bekins, E. M. Godsy, E. Warren, M. J. Baedecker, and I. Cozzarelli, “Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site,” Water Resour. Res. 31, 3309–3327 (1995).CrossRefGoogle Scholar
  33. 33.
    M. S. Elshahed, L. M. Gieg, M. J. McInerney, and J. M. Suflita, “Signature metabolites to in situ attenuation of alkylbenzenes in anaerobic environments,” Environ. Sci. Technol. 35, 682–689 (2001).CrossRefGoogle Scholar
  34. 34.
    P. M. Fedorak, D. L. Coy, M. J. Dudas, M. J. Simpson, A. J. Renneberg, and M. D. MacKinnon, “Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates,” J. Environ. Eng. 2, 199–211 (2003).CrossRefGoogle Scholar
  35. 35.
    L. M. Geig and J. M. Suflita, “Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers,” Environ. Sci. Technol. 36, 3755–3762 (2002).CrossRefGoogle Scholar
  36. 36.
    V. Grossi, C. Cravo-Laureau, R. Guyoneaud, A. Ranchou-Peyruse, and A. Hirshler-rea, “Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary,” Org. Geochem. 39, 1197–1203 (2008).CrossRefGoogle Scholar
  37. 37.
    F. M. Holowenko, M. D. MacKinnon, and P. M. Fedorak, “Methanogens and sulfate-reducing bacteria in oil sands fine tailing waste,” Can. J. Microbiol. 46, 927–937 (2000).CrossRefGoogle Scholar
  38. 38.
    Y. Jung, J.-Y. Park, S.-O. Ko, and Y.-H. Kim, “Stabilization of hydrogen peroxide using phthalic acids in the Fenton and Fenton-like oxidation,” Chemosphere 90, 812–819 (2013).CrossRefGoogle Scholar
  39. 39.
    P. K. C. Kakaria, R. J. Watts, and Y.-H. Kim, “Depth of Fenton-like oxidation in remediation of surface soil,” J. Environ. Eng. 123, 11–17 (1997).CrossRefGoogle Scholar
  40. 40.
    A. Kambhu, S. Comfort, C. Chokejaroenrat, and C. Sakulthaew, “Developing slow-release persulfate candles to treat BTEX contaminated groundwater,” Chemosphere 89, 656–664 (2012).CrossRefGoogle Scholar
  41. 41.
    N. Kang and I. Hua, “Enhanced chemical oxidation of aromatic hydrocarbons in soil systems,” Chemosphere 61, 909–922 (2005).CrossRefGoogle Scholar
  42. 42.
    S. Kong, R. J. Watts, and J. Choi, “Treatment of petroleum contaminated soil using iron mineral catalyzed hydrogen peroxide,” Chemosphere 37, 1473–1482 (1998).CrossRefGoogle Scholar
  43. 43.
    M. E. Lindsey, G. Xu, J. Lu, and M. A. Tarr, “Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrines,” Sci. Total Environ. 307, 215–229 (2003).CrossRefGoogle Scholar
  44. 44.
    D. R. Lovley, “Reduction of iron and humics in subsurface environments,” in Subsurface Microbiology and Biogeochemistry, Ed. by J. K. Fredrickson and M. Fletcher (Wiley, New York, 2001), pp. 193–217.Google Scholar
  45. 45.
    D. R. Lovley, M. J. Baedecker, D. J. Lonergan, M. J. Baedecker, I. M. Cozzarelli, E. J. P. Phillips, and D. I. Siegel, “Oxidation of aromatic contaminants coupled to microbial iron reduction,” Nature 339, 297–299 (1989).CrossRefGoogle Scholar
  46. 46.
    D. R. Lovley and E. J. P. Phillips, “Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese,” Appl. Environ. Microbiol. 54, 1472–1480 (1988).Google Scholar
  47. 47.
    D. R. Lovley and D. J. Lonergan, “Anaerobic oxidation of toluene, phenol, and p-cresol by dissimilatory ironreducing organism, SC-15,” Appl. Environ. Microbiol. 56, 1858–1864 (1990).Google Scholar
  48. 48.
    D. R. Lovley, J. C. Woodward, and F. H. Chapelle, “Stimulation anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands,” Nature 370, 128–131 (1994).CrossRefGoogle Scholar
  49. 49.
    P. B. McMahon and F. H. Chapelle, “Redox processes and water quality of selected principal aquifer systems,” Ground Water 46, 259–271 (2008).CrossRefGoogle Scholar
  50. 50.
    N. C. Mueller, J. Braun, J. Bruns, M. Cernik, P. Rissing, D. Rickerby, and B. Novack, “Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe,” Environ. Sci. Pollut. Res. 19, 550–558 (2012).CrossRefGoogle Scholar
  51. 51.
    J. Pignatello and M. Day, “Mineralization of methyl parathion insecticide in soil by hydrogen peroxide activated with iron(III)-NTA or HEIDA complexes,” Hazard. Waste Hazard. Mater. 13, 237–244 (1996).CrossRefGoogle Scholar
  52. 52.
    J. A. Ramsay, K. Robertson, G. van Loon, N. Acay, and B. A. Ramsay, “Enhancement of PAH biomineralization rates by cyclodextrines under Fe(III)-reducing conditions,” Chemosphere 61, 733–740 (2005).CrossRefGoogle Scholar
  53. 53.
    M. J. Salloum, M. J. Dudas, and P. M. Fedorak, “Microbial reduction of amended sulfate in anaerobic mature fine tailings from oil sand,” Waste Manage. Res. 20, 162–171 (2002).CrossRefGoogle Scholar
  54. 54.
    E. S. Shelobolina, R. T. Anderson, Y. N. Vodyanitskii, A. V. Sivtsov, R. Vuretich, and D. R. Lovley, “Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer,” Geobiology 2, 67–76 (2004).CrossRefGoogle Scholar
  55. 55.
    C. M. So, C. D. Phelps, and L. Y. Young, “Anaerobic transformation of alkanes to fatty acids by sulfatereducing bacterium, strain Hxd3,” Appl. Environ. Microbiol. 69, 3892–3900 (2003).CrossRefGoogle Scholar
  56. 56.
    S. Stasik and K. Wendt-Potthoff, “Interaction of microbial sulfate reduction and methanogenesis in oil sands tailings pond,” Chemosphere 103, 59–66 (2014).CrossRefGoogle Scholar
  57. 57.
    R. J. Watts, D. R. Haller, A. P. Jones, and A. L. Teel, “A foundation for risk-based treatment of gasolinecontaminated soils using modified Fenton’s reaction,” J. Hazard Mater. 76, 73–89 (2000).CrossRefGoogle Scholar
  58. 58.
    R. J. Watts, P. C. Stanton, J. Howsawkeng, and A. L. Teel, “Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide,” Water Res. 36, 4283–4292 (2002).CrossRefGoogle Scholar
  59. 59.
    J. Zedelius, R. Trabus, O. Grundmann, I. Werner, et al., “Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation,” Environ. Microbiol. Rep. 3, 125–135 (2014).CrossRefGoogle Scholar
  60. 60.
    W. Zheng and M. A. Tarr, “Evidence for the existence of ternary complexes of iron, cyclodextrin, and hydrophobic guests in aqueous solution,” J. Phys. Chem. 108, 10172–10176 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. N. Vodyanitskii
    • 1
    Email author
  • S. Ya. Trofimov
    • 1
  • S. A. Shoba
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations