Skip to main content
Log in

Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The saturated hydraulic conductivity (K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Agyare, S. J. Park, and P. L. G. Vlek, “Artificial neural network estimation of saturated hydraulic conductivity,” Vadose Zone J., No. 2, 423–4312 (2007).

    Article  Google Scholar 

  2. L. R. Ahuja, J. W. Naney, R. E. Green, and D. R. Nielsen, “Microporosity to characterize spatial variability of hydraulic conductivity and effects of land management,” Soil Sci. Soc. Am. J., No. 4, 699–702 (1984).

    Article  Google Scholar 

  3. H. Akaike, “New look at the statistical model identification?” IEEE Trans. Autom. Control, No. 6, 716–723 (1974).

    Article  Google Scholar 

  4. B. L. Allen and B. F. Hajek, “Mineral occurrences in soil environments,” in Minerals in Soil Environments, Ed. by J. B. Dixon and S. B. Weed, SSSA Book. Ser. 1. (Soil Science Society of America, Madison, WI, 1989), pp. 199–278.

    Google Scholar 

  5. M. Amini, K. C. Abbaspour, H. Khademi, N. Fathianpour, M. Afyuni, and R. Schulin, “Neural network models to predict cation exchange capacity in arid regions of Iran,” Eur. J. Soil Sci., No. 4, 551–559 (2005).

    Article  Google Scholar 

  6. J. Arvidsson, “Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden I. Soil physical properties and crop yield in six field experiments,” Soil and Tillage Research, No. 1–2, 67–78 (2001).

    Article  Google Scholar 

  7. L. M. Arya, F. J. Leij, P. J. Shouse, and M. T. van Genuchten, “Relationship between the hydraulic conductivity function and the particle-size distribution,” Soil Sci. Soc. Am. J., No. 5, 1063–1070 (1999).

    Article  Google Scholar 

  8. L. Baker and D. Ellison, “Optimization of pedotransfer functions using an artificial neural network ensemble method,” Geoderma 144 (1–2), 212–224 (2008).

    Article  Google Scholar 

  9. L. Baker and D. Ellison, “Optimization of pedotransfer functions using an artificial neural network ensemble method,” Geoderma 144 (1–2), 212–224 (2008).

    Article  Google Scholar 

  10. F. Bartoli, R. Philippy, M. Doirisse, S. Niquet, and M. Dubuit, “Structure and self-similarity in silty and sandy soils: the fractal approach: J Soil Sci V42, N2, June 1991, P167–185,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, No. 6, A336 (1991).

    Article  Google Scholar 

  11. P. Bavaye, J. Y. Parlang, and B. A. Stewart, “Fractal in soil science,” in Advances in Soil Science (CRC Press, Boca Raton, FL, 1998).

    Google Scholar 

  12. H. Bayat, M. R. Neyshabouri, K. Mohammadi, and N. Nariman-Zadeh, “Estimating water retention with pedotransfer functions using multi-objective group method of data handling and ANNs,” Pedosphere, No. 21, 107–114 (2011).

    Article  Google Scholar 

  13. H. Bayat, A. Sedaghat, N. Davatgar, and A. A. Safari Sinegani, “The effect of fractal parameters of particle and micro-aggregate size distributions on the estimation of soil saturated hydraulic conductivity,” Iran. J. Soil Res. 28 (2), 447–458 (2012).

    Google Scholar 

  14. C. H. Benson, H. Zhai, and X. Wang, “Estimating hydraulic conductivity of compacted clay liners,” J. Geotech. Eng., No. 2, 366–387 (1994).

    Article  Google Scholar 

  15. N. R. A. Bird and E. M. A. Perrier, “The pore-solid fractal model of soil density scaling,” Eur. J. Soil Sci., No. 3, 467–476 (2003).

    Article  Google Scholar 

  16. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, USA, 1995).

    Google Scholar 

  17. I. Braud, A. C. Dantas-Antonino, and M. Vauclin, “A stochastic approach to studying the influence of the spatial variability of soil hydraulic properties on surface fluxes, temperature and humidity,” J. Hydrol. 165 (1–4), 283–310 (1995).

    Article  Google Scholar 

  18. G. S. Campbell, “Soil physics with basic,” in Transport Models for Soil-Plant Systems. Developments in Soil Science (Elsevier, Amsterdam, 1985).

    Google Scholar 

  19. K. Christiaens and J. Feyen, “Analysis of uncertainties associated with different methods to determine soil hydraulic properties and their propagation in the distributed hydrological MIKE SHE model,” Journal of Hydrology, No. 1–4, 63–81 (2001).

    Article  Google Scholar 

  20. J. W. Crawford, B. D. Sleeman, and M. I. Young, “On the relation between number-size distributions and the fractal dimension of aggregates,” J. Soil Sci. 44 (4), 555–565 (1993).

    Article  Google Scholar 

  21. N. Davatgar, M. Kavoosi, M. H. Alinia, and M. Paykan, “Study of potassium status and effect of physical and chemical properties of soil on it in paddy soils of Guilan province,” JWSS–Isfahan Univ. Technol. 9 (4), 71–89 (2006).

    Google Scholar 

  22. A. R. Dexter, E. A. Czyz, and O. P. Gaţe, “Soil structure and the saturated hydraulic conductivity of subsoils,” Soil Tillage Res. 79 (2), 185–189 (2004).

    Article  Google Scholar 

  23. B. Dolinar, “Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations,” Appl. Clay. Sci. 45 (1–2), 90–94 (2009).

    Article  Google Scholar 

  24. A. S. Donigian and P. S. C. Rao, Overview of terrestrial processes and modeling, S. C. Hern and S. M. Melancon, Editors, in Book Title, Place Published, Lewis Publishers Chelsea, MI, 1986. p. 3–36.

    Google Scholar 

  25. T. Ebina, R. J. A. Minja, T. Nagase, Y. Onodera, and A. Chatterjee, “Correlation of hydraulic conductivity of clay–sand compacted specimens with clay properties,” Appl. Clay. Sci. 26 (1–4), 3–12 (2004).

    Article  Google Scholar 

  26. B. Efron and R. J. Tibshirani, “An introduction to the bootstrap,” in Monographs on Statistics and Applied Probability (New York, Chapman and Hall, 1993), Vol. 57.

    Google Scholar 

  27. C. Florian Stange and R. Horn, “Modeling the soil water retention curve for conditions of variable porosity,” Vadose Zone J. 4 (3), 602–613 (2005).

    Article  Google Scholar 

  28. N. Fodor, R. Sándor, T. Orfanus, L. Lichner, and K. Rajkai, “Evaluation method dependency of measured saturated hydraulic conductivity,” Geoderma, No. 1, 60–68 (2011).

    Article  Google Scholar 

  29. G. W. Gee and D. Or, “Particle-size analysis,” in Methods of Soil Analysis, Part 4: Physical Methods, Ed. by A. D. Warren (Soil Science Society of America, Madison, WI, 2002), pp. 225–295.

    Google Scholar 

  30. S. Goldberg and R. A. Glaubig, “Effect of saturation cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite,” Clays Clay Miner. 35 (3), 220–227 (1987).

    Article  Google Scholar 

  31. R. B. Grossman and T. G. Reinsch, “Bulk density and linear extensibility,” in Methods of Soil Analysis, Part 4: Physical Methods, Ed. by A. D. Warren (Soil Science Society of America, Madison, WI, 2002), pp. 201–228.

    Google Scholar 

  32. R. Horn, “Soils on water, gas, and heat transport,” in Flux Control in Biological Systems, from Enzymes to Populations and Ecosystems, Ed. by E. D. Schulze (Academic, London, 1994), pp. 336–361.

    Google Scholar 

  33. M. L. House, W. L. Powers, D. E. Eisenhauer, D. B. Marx, and D. Fekersillassie, “Spatial analysis of machine-wheel traffic effects on soil physical properties,” Soil Sci. Soc. Am. J. 65 (5), 1376–1384 (2001).

    Article  Google Scholar 

  34. G. H. Huang and W. H. Zhan, “Fractal property of soil particle-size distribution and its application,” J. Acta Pedol. Sin. 39 (4), 497–503 (2002).

    Google Scholar 

  35. N. Islam, W. W. Wallender, J. P. Mitchell, S. Wicks, and R. E. Howitt, “Performance evaluation of methods for the estimation of soil hydraulic parameters and their suitability in a hydrologic model,” Geoderma 134 (1–2), 135–151 (2006).

    Article  Google Scholar 

  36. N. J. Jarvis, L. Zavattaro, K. Rajkai, W. D. S. Reynold, P. A. Olsen, M. McGechan, M. Mecke, B. Mohanty, P. B. Leeds-Harrison, and D. Jacques, “Indirect estimation of near-saturated hydraulic conductivity from readily available soil information,” Geoderma 108 (1–2), 1–17 (2002).

    Article  Google Scholar 

  37. J. S. Kern, “Evaluation of soil water retention models based on basic soil physical properties.” Soil Sci. Soc. Am. J. 59 (4), 1134–1141 (1995).

    Article  Google Scholar 

  38. Y. Kianpoor Kalkhajeh, R. Rezaie Arshad, H. Amerikhah, and M. Sami, “Multiple linear regression, artificial neural network (MLP, RBF) and ANFIS models for modeling the saturated hydraulic conductivity of tropical region soils (a case study: Khuzestan province: southwest Iran),” Int. J. Agric. 2 (3), 255–265 (2012).

    Google Scholar 

  39. A. Klute and V. Dirksen, “Hydraulic conductivity and diffusivity: laboratory methods,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Ed. by A. Klute (American Society of Agronomy, Madison, WI, 1986), pp. 687–734.

    Google Scholar 

  40. E. J. W. Koekkoek and H. Booltink, “Neural network models to predict soil water retention,” European Journal of Soil Science, No. 3, 489–495 (1999).

    Article  Google Scholar 

  41. T. Kutlu, S. Ersahin, and B. Yetgin, “Relations between solid fractal dimension and some physical properties of soils formed over alluvial and co-illuvial deposits,” J. Food Agric. Environ. 6 (3–4), 445–449 (2008).

    Google Scholar 

  42. D. A. Laird, E. Barriuso, R. H. Dowdy, and W. C. Koskinen, “Adsorption of atrazine on smectites,” Soil Sci. Soc. Am. J. 56 (1), 62–67 (1992).

    Article  Google Scholar 

  43. D. K. H. Lim and P. K. Kolay, “Evaluation method dependency of measured saturated hydraulic conductivity by using Artificial Neural Network (ANN)),” UNIMAS eJ. Civil Eng. 1 (1), (2009).

    Google Scholar 

  44. D. Mallants, D. Jaques, P. H. Tseng, M. T. Van Genuchten, and J. Feyen, “Comparison of three hydraulic property measurement methods.,” Journal of hydrology, No. 295–318 (1997).

    Google Scholar 

  45. H. Merdun, “Alternative methods in the development of pedotransfer functions for soil hydraulic characteristics,” Eurasian Soil Sci. 43 (1), 62–71 (2010).

    Article  Google Scholar 

  46. H. Millán, M. González-Posada, M. Aguilar, J. Domínguez, and L. Céspedes, “On the fractal scaling of soil data. Particle-size distributions,” Geoderma 117 (1–2), 117–128 (2003).

    Article  Google Scholar 

  47. B. Minasny, J. W. Hopmans, T. Harter, S. O. Eching, A. Tuli, and M. A. Denton, “Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data,” Soil Science Society of America Journal, No. 2, 417–429 (2004).

    Article  Google Scholar 

  48. B. Minasny and A. B. McBratney, “The neuro-m method for fitting neural network parametric pedotransfer functions,” Soil Sci. Soc. Am. J. 66 (2), 352–361 (2002).

    Google Scholar 

  49. A. K. Mishra, M. Ohtsubo, L. Li, and T. Higashi, “Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soil-bentonite mixtures,” Appl. Clay Sci. 52 (1–2), 78–84 (2011).

    Article  Google Scholar 

  50. K. Nakano and T. Miyazaki, “Predicting the saturated hydraulic conductivity of compacted subsoils using the non-similar media concept,” Soil & Tillage Research 145–153, No. 145–153 (2005)

    Google Scholar 

  51. M. Nakhaei, “Estimating the Saturated Hydraulic Conductivity of Granular Material, Using Artificial Neural Network, Based on Grain Size Distribution Curve,” Journal of Sciences, Islamic Republic of Iran, No. 1, 55–62 (2005)

    Google Scholar 

  52. NeuroSolutions, Getting Started Manual Version 4, NeuroDimension, Inc (2005).

  53. Y. Pachepsky and M. G. Schaap, “Data mining and exploration techniques,” Dev. Soil Sci. 30, 21–32 (2004).

    Article  Google Scholar 

  54. Y. A. Pachepsky, D. Timlin, and G. Varallyay, “Artificial neural networks to estimate soil water retention from easily measurable data,” Soil Sci. Soc. Am. J. 60 (3), 727–733 (1996).

    Article  Google Scholar 

  55. M. Pagliai, A. Marsili, P. Servadio, N. Vignozzi, and S. Pellegrini, “Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power,” Soil Tillage Res. 73 (1–2), 119–129 (2003).

    Article  Google Scholar 

  56. K. Parasuraman, A. Elshorbagy, and B. C. Si, “Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles,” Soil Sci. Soc. Am. J. 70 (6), 1851–1859 (2006).

    Article  Google Scholar 

  57. E. Perfect and B. D. Kay, “Fractal theory applied to soil aggregation,” Soil Science Society of America Journal, No. 6, 1552–1558 (1991).

    Article  Google Scholar 

  58. E. M. A. Perrier and N. R. A. Bird, “Modeling soil fragmentation: the pore solid fractal approach,” Soil Tillage Res. 64 (1–2), 91–99 (2002).

    Article  Google Scholar 

  59. P. Picton, Neural Networks (Palgrave, New York, 2000).

    Google Scholar 

  60. F. A. Pour and M. Doai, “Comparison of regression pedotransfer functions and artificial neural networks for soil hydraulic properties simulation,” Advances in Environmental Biology, No, 10, 3280–3285 (2011).

    Google Scholar 

  61. W. D. Reynolds, C. F. Drury, X. M. Yang, and C. S. Tan, “Optimal soil physical quality inferred through structural regression and parameter interactions,” Geoderma, No. 3–4, 466–474 (2008).

    Article  Google Scholar 

  62. M. Rieu and G. Sposito, “Fractal fragmentation, soil porosity, and soil water properties: I. Theory,” Soil Sci. Soc. Am. J. 55 (5), 1231–1238 (1991).

    Article  Google Scholar 

  63. M. Rieu and G. Sposito, “Fractal fragmentation, soil porosity, and soil water properties: II. Applications,” Soil Science Society of America Journal, No. 5, 1239–1244 (1991).

    Article  Google Scholar 

  64. M. G. Schaap and W. Bouten, “Modeling water retention curves of sandy soils using neural networks,” Water Resour. Res. 32 (10), 3033–3040 (1996).

    Article  Google Scholar 

  65. M. G. Schaap and F. J. Leij, “Improved prediction of unsaturated hydraulic conductivity with the Mualem–van Genuchten model,” Soil Sci. Soc. Am. J. 64 (3), 843–851 (2000).

    Article  Google Scholar 

  66. M. G. Schaap and F. J. Leij, “Using neural networks to predict soil water retention and soil hydraulic conductivity,” Soil and Tillage Research, No. 1–2, 37–42 (1998).

    Article  Google Scholar 

  67. M. G. Schaap, F. J. Leij, and M. T. van Genuchten, “Neural network analysis for hierarchical prediction of soil hydraulic properties,” Soil Sci. Soc. Am. J. 62 (4), 847–855 (1998).

    Article  Google Scholar 

  68. M. A. Shirazi and L. Boersma, “A unifying quantitative analysis of soil texture,” Soil Sci. Soc. Am. J. 48 (1), 142–147 (1984).

    Article  Google Scholar 

  69. O. Tietje and V. Hennings, “Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes,” Geoderma 69 (1–2), 71–84 (1996).

    Article  Google Scholar 

  70. S. W. Tyler and S. W. Wheatcraft, “Fractal processes in soil water retention,” Water Resour. Res. 26 (5), 1047–1054 (1990).

    Article  Google Scholar 

  71. H. Vereecken, J. Maes, and J. Feyen, “Estimating unsaturated hydraulic conductivity from easily measured soil properties,” Soil Sci. 149 (1), 1–12 (1990).

    Article  Google Scholar 

  72. H. Vereecken, M. Weynants, M. Javaux, Y. Pachepsky, M. G. Schaap, and M. T. van Genuchten, “Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review,” Vadose Zone J. 9, 795–820 (2010).

    Article  Google Scholar 

  73. J. H. M. Wösten, Chapter 10 Pedotransfer functions to evaluate soil quality, 1997. p. 221–245.

    Google Scholar 

  74. J. H. M. Wösten, Y. A. Pachepsky, and W. J. Rawls, “Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics,” J. Hydrol. 251 (3–4), 123–150 (2001).

    Article  Google Scholar 

  75. J. H. M. Wösten and M. T. van Genuchten, “Using texture and other soil properties to predict the unsaturated soil hydraulic functions,” Soil Sci. Soc. Am. J. 52 (6), 1762–1770 (1988).

    Article  Google Scholar 

  76. Y. F. Xu and P. Dong, “Fractal approach to hydraulic properties in unsaturated porous media,” Chaos, Solutions Fract. 19 (2), 327–337 (2004).

    Article  Google Scholar 

  77. I. M. Young, J. W. Crawford, and C. Rappoldt, “New methods and models for characterizing structural heterogeneity of soil,” Soil Tillage Res. 61 (1–2), 33–45 (2001).

    Article  Google Scholar 

  78. T. B. Zeleke and B. C. Si, “Scaling relationships between saturated hydraulic conductivity and soil physical properties,” Soil Sci. Soc. Am. J. 68 (6), 1691–1702 (2005).

    Article  Google Scholar 

  79. B. Zhang and R. Horn, “Mechanisms of aggregate stabilization in Ultisols from subtropical China,” Geoderma 99 (1–2), 123–145 (2001).

    Article  Google Scholar 

  80. C. Zheng and G. D. Bennett, Applied Contaminant Transport Modeling: Theory and Practice (Van Nostrand Reinhold, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bayat.

Additional information

Published in Russian in Pochvovedenie, 2016, No. 3, pp. 377–387.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghat, A., Bayat, H. & Safari Sinegani, A.A. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils. Eurasian Soil Sc. 49, 347–357 (2016). https://doi.org/10.1134/S106422931603008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931603008X

Keywords

Navigation