Skip to main content

Advertisement

Log in

Short-term dynamics and spatial heterogeneity of CO2 emission from the soils of natural and urban ecosystems in the Central Chernozemic Region

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A comparative analysis of the spatial-temporal trends in the emission of CO2 from soils of different functional zones of the city of Kursk, a dark gray soil of an oak forest, and a typical steppe chernozem has been performed. The averaged CO2 emission from the urban soils is 25% higher than that from the natural soils (32.1 ± 17.8 and 17.8 ± 10.2 g CO2/m2 daily, respectively). The spatial heterogeneity of the CO2 emission is also significantly higher for the urban soils, while variation in temporal dynamics of soil respiration among the studied ecosystems was insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Agroecological Assessment of the Lands and Design of Adaptive-Landscape Systems of Agriculture and Agrotechnologies (Rosinformagrotekh, Moscow, 2005) [in Russian].

  2. V. I. Vasenev, Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  3. V. I. Vasenev, O. A. Makarov, and N. D. Ananyeva, “Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast,” Eurasian Soil Sci. 45(2), 194–205 (2012).

    Article  Google Scholar 

  4. V. I. Vasenev, T. V. Prokof’eva, and O. A. Makarov, “The development of approaches to assess the soil organic carbon pools in megapolises and small settlements,” Eurasian Soil Sci. 46(6), 685–696 (2013). doi: 10.7868/S0032180X13060117

    Article  Google Scholar 

  5. L. A. Vorob’eva, Chemical Analysis of Soils (Moscow State University, Moscow, 1998) [in Russian].

    Google Scholar 

  6. E. G. Gavrilenko, E. A. Susyan, N. D. Ananyeva, and O. A. Makarov, “Spatial variability in the carbon of microbial biomass and microbial respiration in soils of the south of Moscow oblast,” Eurasian Soil Sci. 44(10), 1125–1138 (2011).

    Article  Google Scholar 

  7. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokofyeva, Anthropogenic Soils (Oikumena, Smolensk, 2003) [in Russian].

    Google Scholar 

  8. M. V. Guchok, Candidate’s Dissertation in Biology (Moscow, 2009).

    Google Scholar 

  9. V. V. Denisov, A. S. Kurbatova, I. A. Denisova, V. L. Bondarenko, V. A. Grachev, V. V. Gutenev, and B. A. Nagnibeda, Urban Ecology (Rostov-on-Don, 2008) [in Russian].

    Google Scholar 

  10. G. V. Dobrovol’skii and I. S. Urusevskaya, Geography of Soils (Moscow State University, Moscow, 2004) [in Russian].

    Google Scholar 

  11. A Report on the State of Land Resources in Kursk Oblast and Their Use in 2012 (Moscow, 2013) [in Russian].

  12. A Report on the State of the Environment in Kursk Oblast in 2011 (Kursk, 2011) [in Russian].

  13. V. N. Kudeyarov, V. A. Demkin, D. A. Gilichinskii, S. V. Goryachkin, and V. A. Rozhkov, “Global climate changes and the soil cover,” Eurasian Soil Sci. 42(9), 953–966 (2009).

    Article  Google Scholar 

  14. A. S. Kurbatova, V. N. Bashkin, Yu. A. Barannikova, S. G. Gerasimova, E. V. Nikiforova, E. V. Reshetina, V. A. Savel’eva, D. S. Savin, A. V. Smagin, and A. L. Smagin, Ecological Functions of Urban Soils (Madzhenta, Moscow, 2004) [in Russian].

    Google Scholar 

  15. I. N. Kurganova, Doctoral Dissertation in Biology (Moscow, 2010).

    Google Scholar 

  16. I. N. Kurganova and V. O. Lopes De Gerenyu, “The pool of organic carbon in soils of the Russian Federation: Updated estimation in connection with land use changes,” Dokl. Biol. Sci. 426(1), 219–221 (2009).

    Article  Google Scholar 

  17. L. V. Lysak, Doctoral Dissertation in Biology (Moscow, 2010).

    Google Scholar 

  18. L. M. Polyanskaya, N. I. Sukhanova, K. V. Chakmazyan, and D. G. Zvyagintsev, “Changes in the structure of soil microbial biomass under fallow,” Eurasian Soil Sci. 45(7), 710–716 (2012).

    Article  Google Scholar 

  19. T. V. Prokofyeva, I. A. Martynenko, and F. A. Ivannikov, “Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils,” Eurasian Soil Sci. 44(5), 561–571 (2011).

    Article  Google Scholar 

  20. T. V. Prokof’eva and M. N. Stroganova, Soils in Urban Environment, Their Specificity, and Their Environmental Significance (Geos, Moscow, 2004) [in Russian].

    Google Scholar 

  21. A. V. Prusachenko, “Specific features of urban soils,” Kurskii Krai, Nos. 7–8, 128–131 (2008).

    Google Scholar 

  22. A. V. Prusachenko, Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  23. Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

  24. D. V. Sapronov and Ya. V. Kuzyakov, “Separation of root and microbial respiration: Comparison of three methods,” Eurasian Soil Sci. 40(7), 775–784 (2007).

    Article  Google Scholar 

  25. A. V. Smagin, “Present and future of the most fertile soils,” Nauka Ross., No. 1, 23–30 (2013).

    Google Scholar 

  26. M. N. Stroganova, A. D. Myagkova, and T. V. Prokofyeva, “The role of soils in urban ecosystems,” Eurasian Soil Sci. 30(1), 82–86 (1997).

    Google Scholar 

  27. M. Bahn, M. Knapp, Z. Garajova, N. Pfahringer, and A. Cernusca, “Root respiration in temperate mountain grasslands differing in and use,” Global Change Biol. 12, 995–1006 (2006).

    Article  Google Scholar 

  28. W. Bandaranayake, Y. L. Qian, W. J. Parton, D. S. Ojima, and R. F. Follett, “Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model,” Agric. J. 95, 558–563 (2003).

    Google Scholar 

  29. L. Beesley, “Carbon storage and fluxes in existing and newly created urban soils,” J. Environ. Manage. 104, 158–165 (2012).

    Article  Google Scholar 

  30. A. Bond-Lamberty and A. Thomson, “A global database of soil respiration data,” Biogeosciences 7, 1915–1926 (2010).

    Article  Google Scholar 

  31. G. Burba, Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications (Li-Cor Biosciences, Lincoln, NE, 2013).

    Google Scholar 

  32. F. S. III, Chapin, G. M. Woodwell, J. T. Randerson, et al., “Reconciling carbon-cycle concepts, terminology, and methods,” Ecosystems 9, 1041–1050 (2006).

    Article  Google Scholar 

  33. F. S. Chen, J. Yavitt, and X. F. Hu, “Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China,” Appl. Soil Ecol. 75, 181–188 (2014).

    Article  Google Scholar 

  34. N. Gomes-Casanovas, R. Matamala, D. R. Cook, and M. A. Gonzalez-Meler, “Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands,” Global Change Biol. 18, 2532–2545 (2012).

    Article  Google Scholar 

  35. P. M. Groffman, N. L. Law, K. T. Belt, L. E. Band, and G. T. Fisher, “Nitrogen fluxes and retention in urban watershed ecosystems,” Ecosystems 7, 393–403 (2004).

    Google Scholar 

  36. L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a meta-analysis,” Global Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  37. P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contributions to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  38. R. A. Houghton, “Why are estimates of the terrestrial carbon balance so different?” Global Change Biol. 9, 500–509 (2003).

    Article  Google Scholar 

  39. Jo. Hyun-Kil and E. G. McPherson, “Carbon storage and flux in urban residential greenspace,” J. Environ. Manage. 45, 109–133 (1995).

    Article  Google Scholar 

  40. IPCC: Climate Change 2001: Synthesis Report, Ed. by Watson R.T. (Cambridge University Press, Cambridge, UK, 2001), p. 398.

    Google Scholar 

  41. H. H. Janzen, “Carbon cycling in earth systems — a soil science perspective,” Agric. Ecosyst. Environ. 104, 399–417 (2004).

    Article  Google Scholar 

  42. J. P. Kaye, R. L. McCulley, and I. C. Burkez, “Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems,” Global Change Biol. 11, 575–587 (2005).

    Article  Google Scholar 

  43. Y. Kuzyakov and A. A. Larionova, “Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil,” J. Plant Nutr. Soil Sci. 168, 503–520 (2005).

    Article  Google Scholar 

  44. Y. V. Kuzyakov and O. Gavrichkova, “Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls,” Global Change Biol. 16, 3386–3406 (2010).

    Article  Google Scholar 

  45. A. A. Larionova, A. M. Yermolayev, S. A. Blagodatsky, L. N. Rozanova, I. V. Yevdokimov, and D. B. Orlinsky, “Soil respiration and carbon balance of gray forest soils as affected by land use,” Biol. Fertil. Soils 27, 251–257 (1998).

    Article  Google Scholar 

  46. J. R. Leake, D. Johnson, D. P. Donnelly, G. E. Muckle, L. Boddy, and D. J. Read, “Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning,” Can J. Bot.-Rev. Can. De Bot. 82, 1016–1045 (2007).

    Article  Google Scholar 

  47. A. Lehmann and K. Stahr, “Nature and significance of anthropogenic urban soils,” J. Soils Sediments 7, 247–260 (2007).

    Article  Google Scholar 

  48. K. Lorenz and R. Lal, “Biogeochemical C and N cycles in urban soils,” Environ. Int. 35, 1–8 (2009).

    Article  Google Scholar 

  49. C. Milesi, and S. W. Running, “Mapping and modeling the biogeochemical cycling of turf grasses in the United States,” J. Environ. Manage. 36, 426–438 (2005).

    Article  Google Scholar 

  50. F. Moyano, W. Kutsch, and C. Rebmann, “Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands,” Agric. For. Manage. 48, 135–143 (2008).

    Article  Google Scholar 

  51. S. Nilsson, A. Shvidenko, V. Stolbovoi, M. Gluck, M. Jonas, and M. Obersteiner, Full Carbon Account for Russia (Laxenburg, 2000).

    Google Scholar 

  52. T. A. Pickett, M. L. Cadenasso, J. M. Grove, C. G. Boone, P. M. Groffman, E. Irwin, S. S. Kaushal, V. Marshall, B. P. McGrath, C. H. Nilon, R. V. Pouyat, K. Szlavecz, A. Troy, and P. Warren, “Urban ecological systems: scientific foundations and a decade of progress?” J. Environ. Manage. 92, 331–362 (2011).

    Article  Google Scholar 

  53. R. V. Pouyat, I. D. Yesilonis, and D. J. Nowak, “Carbon storage by urban soils in the United States,” J. Environ. Qual. 35, 566–75 (2006).

    Article  Google Scholar 

  54. A. Rey, E. Pegorado, V. Tedeschi, I. De Parri, P. G. Jarvis, and R. Valentini, “Annual variation in soil respiration and its components in a coppice oak forest in Central Italy,” Global Change Biol. 8, 851–866 (2002).

    Article  Google Scholar 

  55. D. G. Rossiter, “Classification of urban and industrial soils in the world reference base for soil resources,” J. Soils Sediments 7, 96–100 (2007).

    Article  Google Scholar 

  56. A. Svirejeva-Hopkins and H. J. Schellnhuber, “Modeling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle,” Carbon Balance Manage., 1–9 (2006).

    Google Scholar 

  57. A. Svirejeva-Hopkins, H. J. Schellnhuber, and V. L. Pomaz, “Urbanized territories as a specific component of the Global Carbon Cycle,” Ecol. Model., 295–312 (2004).

    Google Scholar 

  58. Swift, S. Sequestration of carbon by soil,” Soil Sci. 166, 858–871 (2011).

    Article  Google Scholar 

  59. V. I. Vasenev, J. J. Stoorvogel, and I. I. Vasenev, “Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region,” Catena 107, 96–102 (2013).

    Article  Google Scholar 

  60. D. Zhao, F. Li, and Q. Yang, The Influence of Different Types of Urban Land Use on Soil-Microbial Biomass and Functional Diversity in Beijing (China, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sarzhanov.

Additional information

Original Russian Text © D.A. Sarzhanov, V.I. Vasenev, Yu.L. Sotnikova, A. Tembo, I.I. Vasenev, R. Valentini, 2015, published in Pochvovedenie, 2015, No. 4, pp. 469–478.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarzhanov, D.A., Vasenev, V.I., Sotnikova, Y.L. et al. Short-term dynamics and spatial heterogeneity of CO2 emission from the soils of natural and urban ecosystems in the Central Chernozemic Region. Eurasian Soil Sc. 48, 416–424 (2015). https://doi.org/10.1134/S1064229315040092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315040092

Keywords