Skip to main content
Log in

Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. S. Artem’eva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  2. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Vysshaya Shkola, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. Ya. Vanyushina and L. S. Travnikova, “Organicmineral interactions in soils: a review,” Eurasian Soil Sci. 36(4), 379–387 (2003).

    Google Scholar 

  4. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Yevdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenu, A. I. Utkin, and O. G. Chertov, Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  5. A. A. Larionova, B. N. Zolotareva, I. V. Yevdokimov, S. S. Bykhovets, Y. V. Kuzyakov, and F. Buegger, “Identification of labile and stable pools of organic matter in an agrogray soil,” Eurasian Soil Sci. 44(6), 628–640 (2011).

    Article  Google Scholar 

  6. A. A. Larionova, B. N. Zolotareva, V. N. Kudeyarov, and Y. G. Kolyagin, “Transformation of the organic matter in an agrogray soil and an agrochernozem in the course of the humification of corn biomass,” Eurasian Soil Sci. 46(8), 854–861 (2013).

    Article  Google Scholar 

  7. A. A. Larionova, A. K. Kvitkina, I. V. Yevdokimov, S. S. Bykhovets, and A. F. Stulin, “Effect of temperature on the decomposition rate of labile and stable organic matter in an agrochernozem,” Eurasian Soil Sci. 47(5), 416–424 (2014).

    Article  Google Scholar 

  8. A. A. Larionova, O. G. Zanina, I. V. Yevdokimov, O. S. Khokhlova, V. N. Kudeyarov, A. F. Stulin, F. Buegger, and M. Schloter, “Distribution of stable carbon isotopes in an agrochernozem during the transition from C3 vegetation to a corn monoculture,” Eurasian Soil Sci. 45(8), 768–778 (2012).

    Article  Google Scholar 

  9. D. S. Orlov, Soil Chemistry (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  10. D. S. Orlov and O. N. Biryukova, “The stability of soil organic compounds and the emission of greenhouse gases into the atmosphere,” Eurasian Soil Sci. 31(7), 711–720 (1998).

    Google Scholar 

  11. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  12. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. S. Tulina, “Mineralization of organic matter and the carbon sequestration capacity of zonal soils,” Eurasian Soil Sci. 41(7), 717–730 (2008).

    Article  Google Scholar 

  13. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. K. Khodzhaeva, “Biokinetic indication of the mineralizable pool of soil organic matter,” Eurasian Soil Sci. 40(11), 1208–1216 (2007).

    Article  Google Scholar 

  14. O. A. Chichagova, A. L. Alexandrovsky, S. V. Goryachkin, and I. V. Kovda, “Radiocarbon studies as the basis for evaluating carbon fluxes in the soil-atmosphere system,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 107–112 (2001).

    Google Scholar 

  15. S. Crow, C. Swantson, K. Lajtha, J. Brooks, and H. Keirstead, “Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context,” Biogeochemistry 85, 69–90 (2007).

    Article  Google Scholar 

  16. S. Haile-Mariam, H. P. Collins, S. Wright, and E. A. Paul, “Fractionation and long-term laboratory incubation to measure soil organic matter dynamics,” Soil Sci. Soc. Am. J. 72, 370–378 (2008).

    Article  Google Scholar 

  17. H. Flessa, W. Amelung, M. Helfrich, G. L. B. Wiesenberg, G. Gleixner, S. Brodowski, J. Rethemeyer, C. Kramer, and P. Grootes, “Storage and stability of organic matter and fossil carbon in Luvisol and Phaeozem with continuous maize cropping: a synthesis,” J. Plant Nutr. Soil Sci. 171, 36–51 (2008).

    Article  Google Scholar 

  18. A. A. Larionova, I. V. Yevdokimov, and S. S. Bykhovets, “Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration,” Biogeosciences 4, 1073–1081 (2007).

    Article  Google Scholar 

  19. M. Lucash, R. Simmons, M. Johnson, C. Catricala, and M. Monte, Standard Operating Procedure for the Physical Fractionation Procedure to Determine Soil Organic Matter Quality (Environmental Protection Agency, 2003).

    Google Scholar 

  20. M. Lützow, I. Kogel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  21. E. Paul, S. J. Morris, R. T. Conant, and A. F. Plante, “Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools,” Soil Sci. Soc. Am. J. 70, 1023–1035 (2006).

    Article  Google Scholar 

  22. C. Schadel, Y. Luo, D. Evans, Sh. Fei, and S. M. Schaeffer, “Separating soil CO2 efflux into C-pool specific decay rates via inverse analysis of soil incubation data,” Oecologia 171, 721–732 (2013).

    Article  Google Scholar 

  23. S. Trumbore, “Potential responses of soil organic carbon to global environmental change,” Proc. Natl. Acad. Sci. U.S.A. 94, 8284–8291 (1997).

    Article  Google Scholar 

  24. M. Zimmermann, J. Leifeld, M. W. I. Schmidt, P. Smith, and J. Fuehrer, “Measured soil organic matter fractions can be related to pools in RothC model,” Eur. J. Soil Sci. 58, 658–667 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Larionova.

Additional information

Original Russian Text © A.A. Larionova, B.N. Zolotareva, A.K. Kvitkina, I.V. Evdokimov, S.S. Bykhovets, A.F. Stulin, Ya.V. Kuzyakov, V.N. Kudeyarov, 2015, published in Pochvovedenie, 2015, No. 2, pp. 175–187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, A.A., Zolotareva, B.N., Kvitkina, A.K. et al. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques. Eurasian Soil Sc. 48, 157–168 (2015). https://doi.org/10.1134/S1064229315020076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315020076

Keywords

Navigation