Skip to main content
Log in

Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos’vinsk Upland (Western Siberia)

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The complex studies of hydromorphism features in taiga weakly differentiated soils using morphological (color), chemical (iron content in different extracts, indicators of reducing conditions (IRIS)), and geobotanic (using the Ramenskii scale) methods have led to ambiguous conclusions. In all the soils, surface gleying was manifested. According to the results obtained by different methods, the maximum reduction processes were related to either the sublitter or the next deeper horizon. The Schwertmann coefficient, the criterion of Bodegom, and the Ramenskii scale indicated an increase of hydromorphism in the soils studied in the following sequence: the lower part of the ridge slopes drained by the small gullies < the middle part of the slopes < the flat tops of the ridges < the depression between the ridges. The morphological diagnostics of gleying proved to be a less sensitive method, which can recognize only the most contrasting hydromorphic soils. The lower horizons in some taiga soils have a bluish gray color probably not related to the recent soil hydromorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Avetov, S. A. Avetyan, E. I. Dorofeeva, and S. Ya. Trofimov, “Automorphic taiga soils of the Sredneobskaya Lowland,” Eur. Soil Sci. 45(7), 651–656 (2012).

    Article  Google Scholar 

  2. A. F. Vadyunina and Z. A. Korchagina, Methods for Determining Soil Physical Properties (Vyssh. shkola, Moscow, 1961) [in Russian].

    Google Scholar 

  3. Yu. N. Vodyanitskii, Diagnostics of Waterlogged Mineral Soils (Pochv. inst. im. V.V. Dokuchaeva RASKhN, Moscow, 2008) [in Russian].

    Google Scholar 

  4. Yu. N. Vodyanitskii, Iron Compounds and Their Role in Soil Conservation (Pochv. inst. im. V.V. Dokuchaeva Rossel’khozakad., Moscow, 2010) [in Russian].

    Google Scholar 

  5. Yu. N. Vodyanitskii, A. A. Vasil’ev, and V. Yu. Gilev, “Iron minerals in soils on red-earth deposits in the Cis-Ural region,” Eur. Soil Sci. 40(4), 432–445 (2007).

    Article  Google Scholar 

  6. Yu. N. Vodyanitskii, A. A. Vasil’ev, A. V. Kozheva, and E. F. Sataev, “Specific features of iron behavior in soddy-podzolic and alluvial gleyed soils of the middle Cis-Urals region,” Eur. Soil Sci. 39(4), 354–366 (2006).

    Article  Google Scholar 

  7. L. A. Vorob’eva, Theory and Practice of the Chemical Analysis of Soils (Izd. GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  8. S. S. Voskresenskii, Geomorphology of Siberia (Izd. Mosk. Gos. Univ., Moscow, 1962) [in Russian].

    Google Scholar 

  9. I. M. Gadzhiev, V. M. Kurachev, V. N. Shoba, et al., Genesis, Evolution, and Geography of the Soils of Western Siberia (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  10. G. V. Dobrovol’skii, E. D. Nikitin, and T. V. Afanas’eva, Taiga Pedogenesis under Continental Conditions (Izd. Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  11. L. S. Dolgova and I. P. Gavrilova, “Specific features of soils in the middle and northern taiga subzones of Western Siberia (within Tyumen oblast,”in The Environmental Conditions of Western Siberia, (Izd. Mosk. Gos. Univ., Moscow, 1971), Vol. 1, 77–90 [in Russian].

    Google Scholar 

  12. F. R. Zaidel’man, “Morphogleygenesis, its visual and analytic diagnostics,” Eur. Soil Sci. 37(4), 333–341 (2004).

    Google Scholar 

  13. F. R. Zaidel’man, Gleyzation Process and Its Role in Soil Formation (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  14. F. R. Zaidel’man and A. K. Ogleznev, “Determination of the degree of bogging from the properties of concretions,” Pochvovedenie, No. 10, 94–101 (1971).

    Google Scholar 

  15. N. A. Karavaeva, Swamping and Soil Evolution (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  16. N. A. Karavaeva, Taiga Soils of Western Siberia, (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  17. E. D. Lapshina, “Application of ecological scales for the assessment and prediction of the economic value of natural areas,” in Rational Use of Soil, Vegetative, and Animal Resources of Siberia, (Izd. Tomsk. Gos. Univ., Tomsk, 1986), pp. 86–91 [in Russian].

    Google Scholar 

  18. E. D. Lapshina and V. Bloiten, “Types of disturbances and natural restoration of vegetation of oligotrophic mires on oil fields of Tomsk obast,” Krylovia (Sibirsk. Botan. Zh.) 1(1), 129–140 (1999).

    Google Scholar 

  19. R. G. Mazitov, Extended Abstract of Candidate’s Dissertation in Biology (Novosibirsk, 2010).

    Google Scholar 

  20. N. F. Opryshko, Extended Abstract of Candidate’s Dissertation in Biology (Barnaul, 2000).

    Google Scholar 

  21. Soil Map of the Russian Federation. 1: 2.5 M Scale (GUGK, Moscow, 1988) [in Russian].

  22. V. I. Savich, I. S. Kaurichev, L. L. Shishov, Kh. A. Amerguzhin, and O. D. Sidorenko, Redox Processes in Soils, Their Agronomic Evaluation and Regulation (Kostonai, 1999) [in Russian].

    Google Scholar 

  23. I. A. Tsatsenkin, I. V. Savchenko, and S. I. Dmitrieva, Methodological Guidelines on the Ecological Assessment of Rangelands in the Tundra and Forest Zones of Siberia and the Far East from Data on Their Vegetation Cover (All-Union Res. Inst. of Fodder Crops, Moscow, 1978) [in Russian].

    Google Scholar 

  24. E. A. Shishkonakova, L. I. Abramova, and N. A. Avetov, Experience in using ecological scales of L.G. Ramenskii for indication of disturbed landscapes in oil-mining areas of Western Siberia,” Probl. Region. Ekolog., No. 1, 50–55 (2006).

    Google Scholar 

  25. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  26. N. A. Awetow, E. A. Schischkonakowa, and K. H. Hartge, “Pflanzen als ökologische frühanzeiger anthropogener einflüsse auf die böden im erdölgewinnungsgebiet Westsibiriens,” Archiv für Forstwesen und Landschaftsökologie 41, 36–41 (2007).

    Google Scholar 

  27. K. Bryant, “Indicator of reduction in soils (IRIS) for wetland identification in Queensland,” Proc. 19th WCSS, Brisbane, Australia, Aug. 1–6, 2010 (Publ. on DVD, pp. 25–28).

  28. M. Diekmann, “Species indicator values as an important tool in applied ecology - a review,” Basic Appl. Ecol. 4, 493–506 (2003).

    Article  Google Scholar 

  29. H. Ellenberg, H. E. Weber, R. Dull, et al., “Zeigerwerte von pflanzen in Mitteleuropa,” Scripta Geobot. 18, 1–248 (1992).

    Google Scholar 

  30. V. H. Klauss, T. Kleinbecker, S. Boch, et al., “NIRS meets ellenberg’s indicator values: prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics,” Ecol. Indicators 14, 82–86 (2012).

    Article  Google Scholar 

  31. P. V. Krasilnikov, “Mosaics of the soil cover and species diversity of aboveground vegetation in forest ecosystems of eastern Fennoscandia,” Eur. Soil Sci. 34(Suppl. 1), 90–99 (2001).

    Google Scholar 

  32. J. Kreck, J. Novakova, and Z. Horicka, “Ellenberg’s indicator in water resources control: the Jizera Mountains, Czech Republic,” Ecol. Engineer. 36, 1112–1117 (2010).

    Article  Google Scholar 

  33. A. P. Shaffers and K. V. Sykora, “Reliability of ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements,” J. Veget. Sci. 11, 225–244 (2000).

    Article  Google Scholar 

  34. U. Schwertmann and W. R. Fischer, “Natural “amorphous” ferric hydroxide,” Geoderma 10, 237–247 (1973).

    Article  Google Scholar 

  35. A. L. Walker, “The effects of magnetite on oxalate- and dithionite-extractable iron,” Soil Sci. Soc. Am. J. 47, 1022–1026 (1983).

    Article  Google Scholar 

  36. G. G. Wang, “Use of understory vegetation in classifying soil moisture and nutrient regimes,” Forest Ecol. Managem. 129, 93–100 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Avetov.

Additional information

Original Russian Text © N.A. Avetov, E.O. Sopova, Yu.A. Golovleva, A.V. Kiryushin, P.V. Krasilnikov, 2014, published in Pochvovedenie, 2014, No. 11, pp. 1283–1292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetov, N.A., Sopova, E.O., Golovleva, Y.A. et al. Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos’vinsk Upland (Western Siberia). Eurasian Soil Sc. 47, 1077–1085 (2014). https://doi.org/10.1134/S1064229314110027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314110027

Keywords

Navigation