Electrokinetic properties of soil minerals and soils modified with polyelectrolytes


The formation features of nanoadsorption polyelectrolyte (PE) layers with the formation of a mineral-organic matrix on the surface of clay minerals and soils (kaolinite, montmorillonite, quartz sand, gray forest soil, and chernozemic soil) have been elucidated by direct adsorption measurements. It has been found that the experimental values for the limit adsorption of polyacrylamide (PAM) and polyacrylic acid (PAA) on all the minerals are significantly higher than the calculated values for the formation of a monolayer. This indicates adsorption on the surface of not only separate macromolecules but also secondary PE structures as packets or fibrils determining the cluster-matrix structure of the modified surface. The study of the electro-surface properties (electrophoretic mobility, electrokinetic potential, pH, and electroconductivity) of mineral and soil particles adsorption-modified with PEs has confirmed the differences in the adsorption mechanisms (from physical sorption to chemisorption) with the formation of surface compounds depending on the different polar groups of PEs and the mineral type.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Brunauer, The Adsorption of Gases and Vapors. Vol. 1. Physical Adsorption (Princeton Univ. Press, 1943).

    Google Scholar 

  2. 2.

    V. V. Dobrovol’skii, “The role of humic acids in the formation of migrational fluxes of heavy metals,” Eur. Soil Sci. 37(1), 24–30 (2004).

    Google Scholar 

  3. 3.

    T. B. Ermakova and E. P. Sergeev, “Studying the structure and properties of adsorbed layers of polyelectrolytes on negatively charged surface,” in Structure and Dynamics of Molecular Systems (Yalchik, 2004), Vol. 2, pp. 181–185.

    Google Scholar 

  4. 4.

    N. A. Gur’eva and A. I. Kurbatov, “Electrokinetic properties of solonetzes and solonetzic soils of northern Kazakhstan,” Izvest. TSKhA, No. 6, 119 (1971).

    Google Scholar 

  5. 5.

    A. N. Zhukov, “Dependences of the point of zero charge and the isoelectric point of amphoteric solid surface on concentration and degree of binding of the ions of the background electrolyte. The case of 1: 1 electrolyte,” Colloid J. 58(2), 270–272 (1996).

    Google Scholar 

  6. 6.

    A. I. Kurbatov, “Determination of the electrokinetic potential of soils,” Izvest. TSKhA, No. 5, 3–19 (1970).

    Google Scholar 

  7. 7.

    G. N. Kurochkina and D. L. Pinskii, “Adsorption of polyelectrolytes on synthetic aluminosilicates of given composition,” Zh. Fiz. Khim. 76(6), 1113–1118 (2002).

    Google Scholar 

  8. 8.

    G. N. Kurochkina and D. L. Pinskii, “The effect of pre-adsorption polyelectrolytes on hydrophilic-hydrophobic properties of synthetic aluminosilicates,” Zh. Fiz. Khim. 84(1), 81–89 (2010).

    Google Scholar 

  9. 9.

    G. N. Kurochkina and D. L. Pinskii, “The formation of mineral-organic compounds and their effect on the surface properties of soil aluminosilicates,” Eur. Soil Sci. 37(4), 378–387 (2004).

    Google Scholar 

  10. 10.

    G. N. Kurochkina and D. L. Pinskii, “Development of a mineralogical matrix at the adsorption of polyelectrolytes on soil minerals and soils,” Eur. Soil Sci. 45(11), 1057–1067 (2012).

    Article  Google Scholar 

  11. 11.

    G. N. Kurochkina, D. L. Pinskiy, G. N. Fedotov, M. Hajnos, Z. Sokolowska, and I. Ciesla, “Transformation of the structural organization of clay sediments and soils under the impact of polyelectrolytes,” Eur. Soil Sci. 46(8), 897–907 (2013).

    Article  Google Scholar 

  12. 12.

    G. N. Kurochkina, D. L. Pinskiy, M. Hajnos, Z. Sokolowska, I. Ciesla, and B. Gjegosh, “The impact of nanoadsorption layers of polyectrolytes on the stucture-sorptive properties of minerals and soils,” Agrokhimiya, No. 10, 58–66 (2013).

    Google Scholar 

  13. 13.

    G. N. Kurochkina and O. A. Sokolov, “Kinetics of formation and properties of interphase hydrate films on the surface of anhydrous mineral constituents of soil,” Eur. Soil Sci. 32(7), 758–765 (1999).

    Google Scholar 

  14. 14.

    Yu. S. Lipatov and L. M. Sergeeva, Polymer Adsorption (Naukova Dumka, Kiev, 1972 [in Russian].

    Google Scholar 

  15. 15.

    D. L. Pinskii, Ion-Exchange Processes in Soils (ONTI PNTs RAN, Pushchino, 1997) [in Russian].

    Google Scholar 

  16. 16.

    D. L. Pinskii, “Cluster-matric processes of soil formation and soil functioning,” in Biospheric Functions of the Soil Cover (Pushchino, 2010), pp. 240–242 [in Russian].

    Google Scholar 

  17. 17.

    D. L. Pinskii and G. N. Kurochkina, “Specificity of the adsorption of polyacrylic acid by synthetic aluminosilicates,” Zh. Fiz. Khim. 79(10), 1853–1859 (2005).

    Google Scholar 

  18. 18.

    D. L. Pinskii and G. N. Kurochkina, Soil Processes and the Spatial-Temporal Organization of Soils (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  19. 19.

    A. D. Pomogailo, “Metallopolymeric nanocomposite substances with controlled molecular arctitecture,” Zh. Ros. Khim. ob-va im. D.I. Mendeleeva 15(5) (2002).

    Google Scholar 

  20. 20.

    P. A. Rebinder, Selected Works. Surface Phenomena in Disperse Systems. Colloidal Chemistry (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  21. 21.

    I. P. Sergeeva, T. B. Ermakova, V. D. Sobolev, and N. V. Churaev, “A study of the properities of hydrophobic surfaces by the capillary electrokinetic method,” in Structure and Dynamics of Molecular Systems, iss. 10, part 3, 49–52 (2003) [in Russian].

    Google Scholar 

  22. 22.

    A. A. Slyusar’, O. A. Slyusar’, and N. M. Zdorenko, “Regulation of colloidal-chemical properties of kaolin clay suspensions by complex additives,” Nauchn. Vedom. Belgorod. Gos. Univ., Ser. Estestven. Nauki 15(9), 64–78 (2011).

    Google Scholar 

  23. 23.

    A. V. Smagin and N. B. Sadovnikova, “The impact of strongly swelling polymeric hydrogels on the water retention capacity of coarse-textured soils,” Pochvovedenie, No. 11, 50–55 (1994).

    Google Scholar 

  24. 24.

    O. A. Trubetskoi and O. E. Trubetskaya, “13C-NMR analysis of components of chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities,” Eur. Soil Sci. 44(3), 281–285 (2011).

    Article  Google Scholar 

  25. 25.

    G. N. Fedotov, G. V. Dobrovol’skii, V. I. Putlyaev, A. V. Garshev, V. K. Ivanov, E. I. Pakhomov, “Gel structures in soils,” Eur. Soil Sci. 39(7), 738–747 (2006).

    Article  Google Scholar 

  26. 26.

    A. A. Shevchenko, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  27. 27.

    T. V. Shnee, A. A. Shevchenko, and S. L. Belopukhov, “Solonetzic soils and changes in the electrokinetic potential,” Proc. Conf. Young Sci. of Peoples’ Friendship Univ. of Russia (Izd. RUDN, Moscow, 2009), pp. 212–214 [in Russian].

    Google Scholar 

  28. 28.

    E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloidal Chemistry (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  29. 29.

    A. Biegonowski, B. Witkowska-Walczak, J. Glinski, Z. Sokolowska, C. Slawinski, M. Brzezinska, T. Wlodarczyk, “Database of Polish arable mineral soils: a review,” Intern. Agrophys. 27, 335–350 (2013).

    Google Scholar 

  30. 30.

    G. M. Day, B. T. Hart, I. D. McKelvie, and R. Beckett, “Adsorption of natural organic matter onto goethite,” Colloid. Surf., A: Physicochem. Engin. Aspects 89, 1–13 (1994).

    Article  Google Scholar 

  31. 31.

    D. Youjun, J. B. Dixon, and N. G. White, “Adsorption of polyacrylamide on smectite, illite, and kaolinite,” Soil Sci. Soc. Am. J. 70, 297–304 (2006).

    Article  Google Scholar 

  32. 32.

    T. B. Ermakova, I. P. Sergeeva, A. D. Anuchkina, V. D. Sobolev, N. V. Churaev, “Regularities of the two-layer adsorption of anionic surfactant and cationic polyelectrolyte on the fused quartz surface,” Colloid J. 67 (2005).

  33. 33.

    D. Pinskiy, “Clusters in Soils,” in Encyclopedia of Agrophysics (Springer Verlag, Hannover, 2011), pp. 385–387.

    Google Scholar 

  34. 34.

    N. Senesi, F. R. Rizzi, P. Dellino, and P. Acquafredda, “Fractal dimension of humic acids in aqueous suspension as a function of pH and time,” Soil Sci. Soc. Am. J. 60(6), 1613–1678 (1996).

    Article  Google Scholar 

  35. 35.

    W. Nan, Zh. Lihua, Ts. Shiojenn, and H. Juh-Ping, “Influence of metal oxide nanoparticles concentration on their zeta potential,” J. Colloid. Interface Sci. 407, 22–28 (2013).

    Article  Google Scholar 

  36. 36.

    D. N. Hinckley, “Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina,” Clays Clay Miner. 11, 229–235 (1963).

    Article  Google Scholar 

  37. 37.

    Zetasizer Nano Series. User Manual Iss. 1.1 (Malvern Instr. Ltd, Worcestershire, U.K., 2004).

Download references

Author information



Corresponding author

Correspondence to G. N. Kurochkina.

Additional information

Original Russian Text © G.N. Kurochkina, D.L. Pinskii, M. Haynos, Z. Sokolowska, I. Tsesla, 2014, published in Pochvovedenie, 2014, No. 7, pp. 842–850.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurochkina, G.N., Pinskii, D.L., Haynos, M. et al. Electrokinetic properties of soil minerals and soils modified with polyelectrolytes. Eurasian Soil Sc. 47, 699–706 (2014). https://doi.org/10.1134/S1064229314070084

Download citation


  • surface
  • adsorption
  • matrix
  • electrokinetic potential
  • cluster
  • monolayer
  • polymer