Skip to main content
Log in

Lead content and isotopic composition in submound and recent soils of the Volga Upland

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Borisov, T. S. Demkina, and V. A. Demkin, Paleosols and Climate of the Ergeni Upland in the Bronze Age (4th-2nd millennia BC) (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  2. V. A. Demkin, A. V. Borisov, T. S. Demkina, et al., Volga-Don Steppes in the Ancient Time and Middle Ages (Materials of Pedoarchaeological Studies) (SYNCHRO-BOOK, Pushchino, 2010) [in Russian].

    Google Scholar 

  3. V. A. Demkin, T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, A. V. Borisov, M. V. El’tsov, “Integration of paleopedology and archaeology in the study of nature and society,” in Soil Processes and the Spatiotemporal Organization of Soils (Nauka, Moscow, 2006), pp. 116–140 [in Russian].

    Google Scholar 

  4. G. Faure, Principles of Isotope Geology (John Wiley, New York, 1986).

    Google Scholar 

  5. S. Alfonso, F. Grousset, L. Masse, and J.-P. Tastet, “A European lead isotope signal recorded from 6000 to 300 years bp in costal marshes (SW France),” Atmos. Environ. 35, 3595–3605 (2001).

    Article  Google Scholar 

  6. C. J. Allèrge, Isotope Geology (Cambridge University Press, 2005).

    Google Scholar 

  7. Y. Asmerom and S. B. Jacobsen, “The Pb isotopic evolution of the Earth-inferences from river water suspended loads,” Earth Planet. Sci. Lett. 115, 245–256 (1993).

    Article  Google Scholar 

  8. R. Bindler, M.-L. Brannval, and I. Renberg, “Natural lead concentrations in Pristine boreal forest soils and past pollution trends: a reference for critical load models,” Environ. Sci. Technol. 33, 3362–3367 (1999).

    Article  Google Scholar 

  9. R. Bindler, I. Renberg, and J. Klaminder, “Bridging the gap between ancient metal pollution and contemporary biogeochemistry,” J. Paleolimnol. 40, 755–770 (2008).

    Article  Google Scholar 

  10. G. R. Bourton, K. J. R. Rosman, J. P. Candeloni, L. J. Burn, C. F. Bourton, S. M. Hong, “The impact of climatic conditions on pb and sr isotopic ratios found in Greenland Ice 7–150 Kyr BP,” Earth Planet. Sci. Lett. 239, 557–566 (2007).

    Article  Google Scholar 

  11. M.-L. Bränvall, R. Bindler, I. Renberg, O. Emteryd, J. Bartniki, K. Billstrom, “The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe,” Environ. Sci. Technol. 33, 4391–4395 (1999).

    Article  Google Scholar 

  12. G. L. Cumming and J. R. Richards, “Ore lead isotope ratios in a constantly changing Earth,” Earth Planet. Sci. Lett. 28, 155–171 (1975).

    Article  Google Scholar 

  13. F. De Vleeschouwer, L. Gerard, C. Goormaghtigh, and N. Mattielli, G. Le Roux, and N. Fagel, “Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millennia: human impact on a regional to global scale,” Sci. Total Environ. 377, 282–295 (2007).

    Article  Google Scholar 

  14. V. A. Demkin, I. V. Sergatskov, T. S. Demkina, and A. V. Borisov, “Paleosols, paleoenvironment, and ancient societies in the steppes of southern Russia,” Eur. Soil Sci. 35(Suppl. 1), 61–67 (2002).

    Google Scholar 

  15. A. Dolgopolova, D. J. Weiss, R. Seltmann, B. Kober, T. F. D. Mason, B. Coles, C. J. Stanley, “Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site (Russia),” Appl. Geochem. 21, 563–579 (2006).

    Article  Google Scholar 

  16. Y. Erel, Y. Harlavan, and J. D. Blum, “Lead isotope systematics of granitoid weathering,” Geochim. Cosmochim. Acta 58(23), 5299–5306 (1994).

    Article  Google Scholar 

  17. Y. Erel, A. Veron, and L. Halicz, “Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios,” Geochim. Cosmochim. Acta 61(21), 4495–4505 (1997).

    Article  Google Scholar 

  18. J. G. Farmer, L. J. Eades, A. B. MacKenzie, A. Kirika, and T. E. Baily-Watts, “Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 A.D,” Environ. Sci. Technol. 30, 3080–3083 (1996).

    Article  Google Scholar 

  19. H.-E. Gäbler and A. Suckow, “Chronology of anthropogenic heavy-metal fluxes and Pb isotopic ratios derived from radiometricaly dated lake sediments in northern Germany,” Water Air Soil Pollut. 144, 243–262 (2003).

    Article  Google Scholar 

  20. C. Gallon, M. A. Ranville, C. Conway, W. Landing, C. S. Buck, P. M. Morton, R. Flegal, “Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols,” Environ. Sci. Technol. 45, 9874–9882 (2011).

    Article  Google Scholar 

  21. U. K. Haack, F. H. Gutsche, K. Plessow, and H. Heinrichs, “On the isotopic composition of Pb in cloud waters in central Germany: a source discrimination study,” Water Air Soil Pollut. 19, 261–288 (2002).

    Google Scholar 

  22. U. K. Haack, H. Heinrichs, F. H. Gutsche, and K. Plessow, “The isotopic composition of anthropogenic Pb in soil profiles of northern Germany: evidence for pollutant Pb from a continent-wide mixing system,” Water Air Soil Pollut. 150, 113–134 (2003).

    Article  Google Scholar 

  23. U. K. Haack, B. Kienholz, C. Reimann, J. Schneider, E. F. Stumpel, “Isotopic composition of lead in moss and soil of the European Arctic,” Geochim. Cosmochim. Acta 68(12), 2613–2622 (2004).

    Article  Google Scholar 

  24. Y. Harlavan, Y. Erel, and J. D. Blum, “Systematic changes in lead isotopic composition with soil age in glacial granitic terrains,” Geochim. Cosmochim. Acta 62(1), 33–46 (1998).

    Article  Google Scholar 

  25. S. R. Hemming and S. M. McLennan, “Pb isotope compositions of modern deep sea turbidities,” Earth Planet. Sci. Lett. 184, 489–503 (2001).

    Article  Google Scholar 

  26. S. Hong, J. P. Candelone, C. C. Patterson, and C. F. Boutron, “History of ancient copper smelting pollution during roman and medieval times recorded in Greenland Ice,” Science 272, 246–249 (1996).

    Article  Google Scholar 

  27. J. F. Hopper, H. B. Ross, W. T. Sturges, and L. A. Barrie, “Regional Source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead,” Tellus, 45–60 (1991).

    Google Scholar 

  28. I. Ilyin, O. Rozovskaya, O. Travnikov, W. Aas, J. P. Hettelingh, G. J. Reinds, “Heavy metals: transboundary pollution of the vironment,” EMEP Status Report 2, 94 (2008).

    Google Scholar 

  29. International Lead and Zinc Study Group, Lead and Zink Statistics: Monthly Bull. 39(8) (1999).

    Google Scholar 

  30. P. E. Jensen, L. M. Ottosen, and A. J. Pedersen, “Speciation of Pb in industrially polluted soils,” Water Air Soil Pollut. 170, 359–382 (2006).

    Article  Google Scholar 

  31. O. S. Khokhlova, A. A. Khokhlov, and N. L. Morgunova, “Evolution of soils in the Holocene chronosequence in the Ural River valley (Cis-Ural steppe),” Eur. Soil Sci. 37(Suppl. 1), 525–535 (2004).

    Google Scholar 

  32. J. Klaminder, R. Bindler, J. Rydberg, and I. Renberg, “Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils,” Geochim. Cosmochim. Acta 72, 703–712 (2008).

    Article  Google Scholar 

  33. J. Klaminder, I. Renberg, R. Bindler, and O. Emteryd, “Isotopic trends and background fluxes of atmospheric lead in northern Europe: analyses of three ombrotrophic bogs from south Sweden,” Glob. Biogeochem. Cycles 17 (2003).

  34. M. Komarek, V. Ettler, V. Chrastny, and M. Mihaljevic, “Lead Isotopes in environmental sciences: a review,” Environ. Intern. 34, 562–577 (2008).

    Article  Google Scholar 

  35. J. D. Kramers and I. N. Tolstihim, “Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust,” Chem. Geol. 139, 75–110 (1997).

    Article  Google Scholar 

  36. I. Kuleffa, I. Ilieva, E. Pernickaa, and D. Gergova, “Chemical and lead isotope compositions of lead artefacts from ancient Thracia (Bulgaria),” J. Cultur. Heritage 7, 244–256 (2006).

    Article  Google Scholar 

  37. M. E. Kylander, J. Klaminder, R. Bindler, and D. J. Weiss, “Natural lead isotope variations in the atmosphere,” Earth Planet. Sci. Lett. 290, 44–53 (2010).

    Article  Google Scholar 

  38. M. E. Kylander, D. Weiss, and B. Kobler, “Two high resolution terrestrial records of atmospheric Pb dposition from New Brunswick, Canada, and Loch Laxford, Scotland,” Sci. Total Environ. 4, 1644–1657 (2009).

    Article  Google Scholar 

  39. M. E. Kylander, D. J. Weiss, A. Martinez Cortizas, B. Spiro, R. Garcia-Sanchez, and B. J. Coles, “Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using 8000-year old peat core from NW Spain,” Earth Planet. Sci. Lett. 240, 467–485 (2005).

    Article  Google Scholar 

  40. R. Millot, C.-J. Allegre, J. Gaillardet, and S. Roy, “Lead isotope systematics of major river sediments: a new estimate of the Pb isotopic composition of the upper continental crust,” Chem. Geol. 203, 75–90 (2004).

    Article  Google Scholar 

  41. F. Monna, D. Galop, L. Carozza, M. Tual, A. Beyrie, F. Marembert, C. Chateau, J. Dominik, F. E. Grousset, “Environmental impact of early basque mining and smelting recorded in high ash minerogenic peat deposit,” Sci. Total Environ. 327, 197–214 (2004).

    Article  Google Scholar 

  42. F. Monna, J. Lancelot, I. W. Croudace, A. B. Cundy, J. T. Lewis, “Pb isotopic composition of airborne particulate material from france and the southern United Kingdom: implication for Pb pollution sources in urban areas,” Environ. Sci. Technol. 31, 2277–2286 (1997).

    Article  Google Scholar 

  43. H. Mukai, T. Machida, A. Tanaka, P. V. Yelpatievskiy, M. Uematsu, “Lead isotope ratios in the urban air of eastern and central Russia,” Atmos. Environ. 35, 2783–2793 (2001).

    Article  Google Scholar 

  44. M. Murozumi, T. J. Chow, and C. C. Patterson, “Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata,” Geochim. Cosmochim. Acta 33, 1247–1294 (1969).

    Article  Google Scholar 

  45. M. Novak, Y. Erel, L. Zemanova, S. H. Bottrell, M. Adamova, “A comparison of lead pollution record in sphagnum peat with known historical Pb emission rates in British Isles and the Czech Republic,” Atmos. Environ. 42, 8997–9006 (2008).

    Article  Google Scholar 

  46. J. O. Nriagu, “A global assessment of natural sources of atmospheric trace metals,” Nature 338, 47–49 (1989).

    Article  Google Scholar 

  47. J. O. Nriagu and J. M. Pachyna, “Quantitative assessment of worldwide contamination of air, water, and soils by trace metals,” Nature 333, 134–139 (1988).

    Article  Google Scholar 

  48. E. G. Pacyna and J. M. Pacyna, “An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide,” Environ. Rev. 9, 269–298 (2001).

    Article  Google Scholar 

  49. J. M. Pachyna, T. M. Scholtz, and Y.-F. Li, “Global budget of trace metal sources,” Environ. Rev. 3, 145–159 (1995).

    Article  Google Scholar 

  50. C. Reimann, B. Flem, K. Fabian, M. Birke, A. Ladenberger, P. Negrel, A. Demetriades, J. Hoogewerff, “The GEMAS project team. Lead and lead isotopes in agricultural soils of Europe-the continental perspective,” Appl. Geochem. 27, 532–542 (2012).

    Article  Google Scholar 

  51. I. Renberg, M.-L. Brannvall, R. Bindler, and O. Emteryd, “Atmospheric lead pollution history during four millennia (2000 BC to 2000 AD) in Sweden,” AMBIO 29(3), 150–156 (2000).

    Google Scholar 

  52. I. Renberg, M.-L. Brannvall, R. Bindler, and O. Emteryd, “Stable lead isotopes and lake sediments-a useful combination for study of atmospheric lead pollution history,” Sci. Total Environ. 292, 45–54 (2002).

    Article  Google Scholar 

  53. K. J. R. Rosman, W. Chisholm, S. Hong, J. P. Candelone, C. F. Bourton, “Lead from Cartagianian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 BC to 300 AD,” Environ. Sci. Technol. 31, 3413–3416 (1997).

    Article  Google Scholar 

  54. K. J. R. Rosman and P. D. P. Taylor, “Report of the IUPAC subcommittee for isotopic abundance measurements,” Pure Appl. Chem. 71, 1593–1607 (1999).

    Article  Google Scholar 

  55. D. F. Sangster, P. M. Outridge, and W. J. Davis, “Stable lead isotope characteristics of lead ore deposits of environmental significance,” Environ. Rev. 8, 115–147 (2000).

    Article  Google Scholar 

  56. E. V. Sayre, E. C. Joel, M. J. Blackman, K. F. Yener, H. Oezbal, “Stable lead isotope studies of Black Sea Anatolian ore sources and related Bronze Age and Phrygian artefacts from nearby archaeological sites. appendix: new Central Taurus ore data,” Archaeometry 43, 77–115 (2001).

    Article  Google Scholar 

  57. B. Scaife, “Database of lead isotope ratios for ores collected from around the Mediterranean, papers published between 1987 and 1997,” http://brettscaife.net/lead/data/index.html.

  58. D. M. Settle and C. C. Patterson, “Lead in Albacore: guide to lead pollution in Americans,” Science 207, 1167–1176 (1980).

    Article  Google Scholar 

  59. H. Shiharata, W. Elias, and C. C. Patterson, “Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond,” Geochim. Cosmochim. Acta 44, 149–162 (1980).

    Article  Google Scholar 

  60. W. Shotyk, P. Blaser, A. Grunig, and A. K. Cheburkin, “A new approach for quantifying cumulative, anthropogenic, atmospheric lead depositions using peat cores from bogs: Pb in eight Swiss peat bog profiles,” Sci. Total Environ. 249, 281–295 (2000).

    Article  Google Scholar 

  61. W. Shotyk, D. Weiss, J. D. Kramers, R. Frei, A. K. Cheburkin, M. Gloor, S. Reese, “Geochemistry of the peat bog at Etang De La Gruere, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12270 14C Yr BP,” Geochim. Cosmochim. Acta 65, 2337–2360 (2001).

    Article  Google Scholar 

  62. J. S. Stacey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two stage model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  Google Scholar 

  63. M. Tatsumoto, R. J. Knight, and C. J. Alleger, “Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206,” Science 180, 1279–1283 (1973).

    Article  Google Scholar 

  64. M. F. Thirlwall, M. A. M. Gee, R. N. Taylor, and B. J. Murton, “Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios,” Geochim. Cosmochim. Acta 68, 361–386 (2004).

    Article  Google Scholar 

  65. P. Vallelonga, P. Gabrielli, K. J. R. Rosman, C. Barbante, C. F. Bourton, “A 220 Kyr record of Pb isotopes at Dome C Antarctica from analyses of the EPICA ice core,” Geophys. Res. Lett. 32, 32 (2005).

    Article  Google Scholar 

  66. D. Weiss, W. Shotyk, and O. Kempf, “Archives of atmospheric lead pollution,” Naturwissenschaften 86, 262–275 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Pampura.

Additional information

Original Russian Text © T.V. Pampura, A. Probst, D.V. Ladonin, V.A. Demkin, 2013, published in Pochvovedenie, 2013, No. 11, pp. 1325–1343.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pampura, T.V., Probst, A., Ladonin, D.V. et al. Lead content and isotopic composition in submound and recent soils of the Volga Upland. Eurasian Soil Sc. 46, 1059–1075 (2013). https://doi.org/10.1134/S1064229313090020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313090020

Keywords

Navigation