Skip to main content
Log in

Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature)

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5–5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and the Processes of Its Transformation, (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. G. M. Varshal, I. Ya. Koshcheeva, and I. S. Sirotkina, “A study of the organic matter in surface water and its interaction with metal ions,” Geokhimiya, No. 4, 598–607 (1979).

    Google Scholar 

  3. E. F. Vedrova and V. M. Korsunov, “Composition of lysimetric water in soddy pale-podzolic soils of Western Siberia,” Pochvovedenie, No. 6, 49–54 (1985).

    Google Scholar 

  4. I. M. Gadzhiev and M. I. Dergacheva, “On the problem of water migration of organic substances in the southern taiga zone of Western Siberia,” in On Soils of Siberia (Nauka, Moscow, 1978), pp. 209–219 [in Russian].

    Google Scholar 

  5. M. A. Glazovskaya, Pedolithogenesis and Continental Carbon Cycle (Knizhnyi dom “Librokom”, Moscow, 2009) [in Russian].

    Google Scholar 

  6. P. V. Elpat’evskii, Geochemistry of Migration Fluxes in Natural and Natural-Technogenic Geosystems (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  7. E. I. Karavanova, L. A. Belyanina, A. D. Shapiro, and A. A. Stepanov, “Effect of litters on the mobility of zinc, copper, manganese, and iron in the upper horizons of podzolic Soils,” Eur. Soil Sci. 39(1), 35–43 (2006).

    Article  Google Scholar 

  8. A. I. Karpukhin, Application of Gel Chromatography in Soil Studies (Izd. TSKhA, Moscow, 1984) [in Russian].

    Google Scholar 

  9. A. I. Karpukhin, V. A. Chernikov, I. M. Yashin, and I. Nmadzuru, “Water-soluble organic substances as factor of the soil-geochemical migration of heavy metals,” Dokl. TSKhA, No. 266, 119–125 (1995).

    Google Scholar 

  10. A. I. Karpukhin, I. M. Yashin, and V. A. Chernikov, “The formation and migration of the complexes of water-soluble organic substrances with heavy metal ions in taiga landscapes of the European north,” Izv. Timiryaz. Sel’skokhoz. Akad., No. 2, 107–126 (1993).

    Google Scholar 

  11. I. S. Kaurichev, I. M. Yashin, and V. A. Chernikov, Theory and Practice of the Method of Sorption Lysimeters in Ecological Strudies (Izd. MSKhA, Moscow, 1996) [in Russian].

    Google Scholar 

  12. I. S. Kaurichev, A. D. Fokin, and A. I. Karpukhin, “Water-soluble organomineral compounds in soils of the taiga forest zone,” Dokl. TSKhA, No. 243, 35–42 (1978).

    Google Scholar 

  13. T. N. Lutsenko, V. S. Arzhanova, and N. Yu. Kim, “Transformation of dissolved organic matter in soils of the felled areas in fir-spruce forests (Primorskii krai),” Eur. Soil Sci. 39(6), 604–610 (2006).

    Article  Google Scholar 

  14. E. Yu. Milanovskii, Humic Substances as a System of Hydrophilic-Hydrophobic Compounds (Doctoral Diss. in Biology) (Moscow, 2006) [in Russian].

    Google Scholar 

  15. E. A. Timofeeva, Extended Abstract of Candidate Dissertation in Biology (Moscow, 2010) [in Russian].

    Google Scholar 

  16. T. E. Shitikova, “Composition of lysimetric water in soddy-podzolic soils,” Pochvovedenie, No. 4, 27–38 (1986).

    Google Scholar 

  17. G. R. Aiken, “Isolation and concentration techniques for aquatic humic substances,” in Humic Substances in Soil, Sediment and Water: Geochemistry and Isolation (Wiley-Interscience, New York, 1985).

    Google Scholar 

  18. G. R. Aiken and J. A. Leenheer, “Isolation and chemical characterization of dissolved and colloidal organic matter,” Chem. Ecol 8, 135–151 (1993).

    Article  Google Scholar 

  19. F. Amery, C. Vanmoorleghem, and E. Smolders, “Adapted DAX-8 fractionation method for dissolved organic matter from soils: development, calibration with test components and application to contrasting soil solutions,” Eur. J. Soil Sci. 60, 956–965 (2009).

    Article  Google Scholar 

  20. L. Barber, J. Leenheer, T. Noyes, and A. Stiles, “Nature and transformation of dissolved organic matter in treatment wetlands,” Environ. Sci. Technol. 35, 4805–4816 (2001).

    Article  Google Scholar 

  21. B. Chefetz, P. G. Hatcher, Y. Hadar, and Y. Chen, “Characterization on dissolved organic matter extracted from composted municipal solid waste,” Soil Sci. Soc. Am. J. 62, 326–332.

  22. C. Chenu and G. Stotzky, “Interactions between microorganisms and soil particles: an overview,” in Interactions between Soil Particles and Microorganisms, Ed. by P. M. Huang, J.-M. Bollag, and N. Senesi (J. Wiley & Sons, Chichester, UK, 2002), pp. 4–40.

    Google Scholar 

  23. J. Chorover and M. K. Amistadi, “Reaction of forest floor organic matter at goethite, birnessite, and smectite surfaces,” Geochim. Cosmochim. Acta 65, 95–109 (2001).

    Article  Google Scholar 

  24. G. D’Imporzano and A. Fabrizio, “The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting,” Biodegradation 18, 103–113 (2007).

    Google Scholar 

  25. J. A. Davis and R. Gloor, “Adsorption of dissolved organics in lake water by aluminum oxide: effect of molecular weight,” Environ. Sci. Technol. 15, 1223–1229 (1981).

    Article  Google Scholar 

  26. R. G. Donald, D. W. Anderson, and J. W. B. Stewart, “Potential role of dissolved organic carbon in phosphorus transport in forested soils,” Soil Sci. Soc. Am. J. 57, 1611–1618 (1993).

    Article  Google Scholar 

  27. C. D. Evans, D. T. Monteith, and D. M. Cooper, “Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts,” Environ. Pollut. 137, 55–71 (2005).

    Article  Google Scholar 

  28. C. Freeman, N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, J. Hudson, “Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels,” Nature 430, 195–198 (2004).

    Article  Google Scholar 

  29. C. Freeman, “Export of organic carbon from peat soils,” Nature 412, 785–789 (2001).

    Article  Google Scholar 

  30. K. E. Frey and L. C. Smith, “Amplified carbon release from vast West Siberian peatlands by 2010,” Geophys. Res. Lett. 32, L09401 (2005).

    Article  Google Scholar 

  31. C. Gallet and C. Keller, “Phenolic composition in soil solutions: comparative study lysimeter and centrifuge waters,” Soi. Biol. Biochem. 31, 1151–1160 (1999).

    Article  Google Scholar 

  32. B. Gu, J. Schmitt, Z. Chen, L. Liang, J. McCarthy, “Adsorption and desorption of different organic matter fractions on iron oxide,” Geochim. Cosmochim. Acta 59, 219–229 (1995).

    Article  Google Scholar 

  33. B. Gu, J. Schmitt, Z. Chen, L. Liang, J. McCarthy, “Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models,” Eniron. Sci. Technol. 28, 38–46 (1994).

    Article  Google Scholar 

  34. G. Guggenberger and K. Kaiser, “Dissolved organic matter in soils: challenging the paradigm of sorptive preservation,” Geoderma 113, 293–310 (2003).

    Article  Google Scholar 

  35. G. Guggenberger and W. Zech, “Dissolved organic carbon in forest floor leachates: simple degradation products of humic substances,” Sci. Tot. Enironm. 152, 37–47 (1994).

    Article  Google Scholar 

  36. R. A. Houghton, “Changes in the storage of terrestrial carbon since 1850,” in Soils and Global Change (CRC & Lewis Publishers, Boca Raton, FL, 1995).

    Google Scholar 

  37. N. V. Hue, G. R. Craddock, and F. Adams, “Effect of organic acids on aluminum toxicity in subsoils,” Soil Sci. Soc. Am. J. 50, 28–35 (1986).

    Article  Google Scholar 

  38. R. Jandl and R. Sletten, “Mineralisation of forest soil carbon: interaction with metals,” J. Plant Nutr. Soil Sci. 162, 623–629 (1999).

    Article  Google Scholar 

  39. M. R. Jekel, “Interactions of humic acids and aluminum salts in the flocculation process,” Water Res. 20, 1535–1542 (1986).

    Article  Google Scholar 

  40. M. Kahle, M. Kleber, and R. Jahn, “Retention of dissolved organic matter by illitic soils and clay fractions: influence of mineral phase properties,” J. Plant Nutr. Soil Sci. 166(Iss. 6), 737–741 (2003).

    Article  Google Scholar 

  41. K. Kaiser and G. Guggenberger, “Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation,” Eur. J. Soil Sci. 58, 45–59 (2007).

    Article  Google Scholar 

  42. K. Kaiser and G. Guggenberger, “Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil,” Geoderma 127, 177–187 (2005).

    Article  Google Scholar 

  43. K. Kaiser and G. Guggenberger, “The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils,” Org. Geochem. 31, 711–725 (2000).

    Article  Google Scholar 

  44. K. Kaiser, G. Guggenberger, L. Haumaier, and W. Zech, “Dissolved Organic Matter Sorption on Subsoils and Minerals Studied by 13C-NMR and DRIFT Spectroscopy,” European J. of Soil Science 48(Iss. 2), 301–321 (1997).

    Article  Google Scholar 

  45. K. Kaiser, G. Guggenberger, L. Haumaier, and W. Zech, “Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany,” Biogeochemistry 55, 103–143 (2001).

    Article  Google Scholar 

  46. K. Kaiser, G. Guggenberger, L. Haumaier, and W. Zech, “The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil,” Org. Geochem. 33, 307–318 (2002).

    Article  Google Scholar 

  47. K. Kaizer, G. Guggenberger, and W. Zech, “Sorption of DOM and DOM fractions to forest soils,” Geoderma 74, 281–303 (1996).

    Article  Google Scholar 

  48. K. Kaiser and K. Kalbitz, “Contribution of dissolved organic matter to carbon storage in forest mineral soils,” Plant Nutr. Soil Sci. 171, 52–60 (2008).

    Article  Google Scholar 

  49. K. Kaiser and W. Zech, “Competitive sorption of dissolved organic matter fractions to soils and related mineral phases,” Soil Sci. Soc. Am. J. 61(1), 64–69 (1997).

    Article  Google Scholar 

  50. K. Kaiser and W. Zech, “Rates of dissolved organic matter release and sorption in forest soils,” Soil Sci. 163(9), 714–725 (1998).

    Article  Google Scholar 

  51. K. Kaiser and W. Zech, “Release of natural organic matter sorbed to oxides and a subsoil,” Soil Sci. Soc. Am. J. 63, 1157–1166 (1999).

    Article  Google Scholar 

  52. K. Kalbitz, J. Schmerwitz, D. Schwesig, and E. Matzner, “Biodegradation of soil-derived dissolved organic matter as related to its properties,” Geoderma 113, 273–291 (2003).

    Article  Google Scholar 

  53. K. Kalbitz, D. Schwesig, J. Rethemeyer, and E. Matzner, “Stabilization of dissolved organic matter by sorption to the mineral soil,” Soil Biol. Biochem. 37, 1319–1331 (2005).

    Article  Google Scholar 

  54. J. Kenedy, M. Billet, D. Duthie, A. Fraser, A. Harrison, “Organic matter retention in an upland humic podsols the effect of pH and solute type,” J. Soil Sci. 47, 615–625 (1996).

    Article  Google Scholar 

  55. J. Kinyangi, D. Solomon, B. Liang, M. Lerotic, S. Wirick, J. Lehmann, “Nanoscale biogeocomplexity of the organomineral assemblage in soil. application of STXM microscopy and C 1s-NEXAFS spectroscopy,” Soil Sci. Soc. Am. J. 70, 1708–1718 (2006).

    Article  Google Scholar 

  56. Land Use, Land Use Change and Forestry (IPSS Special Report (Cambridge Univ. Press, 2000).

  57. J. A. Leenheer, “Characterizing dissolved aquatic organic matter,” Eniron. Sci. Technol. 37(1), 19–26 (2003).

    Google Scholar 

  58. J. A. Leenheer, “Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters,” Environ. Sci. Technol. 15(5), 578–587 (1981).

    Article  Google Scholar 

  59. M. Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review,” Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  60. T. F. Marhaba, D. Van, and R. L. Lippincott, “Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures,” Water Resourses 34(14), 3543–3550 (2000).

    Article  Google Scholar 

  61. B. Marschner and K. Kalbitz, “Controls of bioavailability and biodegradability of dissolved organic matter in soils,” Geoderma 113, 211–235 (2003).

    Article  Google Scholar 

  62. J. F. McCarthy, “Carbon fluxes in soil: long term sequestration in deeper soil horizons,” J. Geogr. Sci. 15(2), 149–154 (2005).

    Article  Google Scholar 

  63. W. H. McDowell and G. E. Likens, “Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley,” Ecol. Monogr. 8, 177–195 (1988).

    Article  Google Scholar 

  64. W. H. McDowell, A. Zsolnay, J. A. Aitkenhead-Peterson, E. G. Gregorich, D. L. Jones, D. Jodemann, K. Kalbitz, B. Marschner, D. Schwesig, “A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources,” Soil Biol. Biochem. 38, 1933–1942 (2006).

    Article  Google Scholar 

  65. P. Nelson, J. A. Baldock, and J. M. Oades, “Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties,” Biogeochemistry 19, 27–50 (1993).

    Article  Google Scholar 

  66. R. L. Parftt, A. R. Fraser, and V. C. Farmer, “Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite,” J. Soil Sci. 28, 289–296 (1977).

    Article  Google Scholar 

  67. E. M. Perdue and J. D. Ritchie, “Dissolved organic matter in freshwaters,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2004).

    Google Scholar 

  68. A. S. Prokushkin, O. S. Pokrovsky, L. S. Shirokova, M. A. Korets, J. Viers, S. G. Prokushkin, R. M. W. Amon, G. Guggenberger, W. H. McDowell, “Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau,” Environ. Res. Lett. 6 (2011).

  69. R. Qualls and B. L. Haines, “Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water,” Soil Sci. Soc. Am. J. 56, 578–586 (1992).

    Article  Google Scholar 

  70. R. G. Qualls, B. L. Haines, W. T. Swank, and S. W. Tyler, “Retention of soluble organic nutrients by a forested ecosystem,” Biogeochemistry 61, 135–171 (2002).

    Article  Google Scholar 

  71. M. Roberts, Soil Carbon Sequestration for Improved Land Management (World Soil Resources Report No. 96) (FAO, Rome, 2001).

    Google Scholar 

  72. D. Said-Pullicino and G. Gigliotti, “Oxidative biodegradation of DOM during composting,” Chemosphere 68, 1030–1040 (2007).

    Article  Google Scholar 

  73. P. Santos, M. Otero, O. M. S. Filipe, E. B. H. Santos, and A. C. Duarte, “Comparison between DAX8 and C-18 solid phase extraction of rainwater organic matter,” Talanta 83, 505–512 (2010).

    Article  Google Scholar 

  74. M. Schumacher, I. R. Christ, D. Vogt, K. Barmettler, C. Jacobsen, R. Kretzschmar, “Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons,” Biogeochemistry 80(3), 263–275 (2006).

    Article  Google Scholar 

  75. D. Schwesig, K. Kalbitz, and E. Matzner, “Mineralization of dissolved organic carbon in mineral soil solution of two forest soils,” J. Plant Nutr. Soil Sci. 166, 585–593 (2003).

    Article  Google Scholar 

  76. Y. H. Shen, “Sorption of natural dissolved organic matter on soil,” Chemosphere 38(7), 1505–1515 (1999).

    Article  Google Scholar 

  77. Y. H. Shen, L. Strom, J. A. Jonsson, and G. Tyler, “Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) Cambisols determined by ion chromatography using supported liquid membrane enrichment technique,” Soil Biol. Biochem. 28(9), 1163–1169 (1996).

    Article  Google Scholar 

  78. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, Contribution of Working Group I to the 4th Assessment Report of the IPCC (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  79. B. W. Strobel, “Influence of vegetation on low molecular weight carboxylic acids in soil solution,” Geoderma 99, 169–198 (2001).

    Article  Google Scholar 

  80. E. M. Thurman and R. Malcolm, “Preparative isolation of aquatic humic substances,” Environ. Sci. Technol. 15, 463–466 (1981).

    Article  Google Scholar 

  81. P. A. W. van Hees and U. S. Lundsrom, “Equilibrium models of Al and Fe complexation with different organic acids in soil solution,” Geoderma 94, 201–221 (2000).

    Article  Google Scholar 

  82. J. A. van Veen and P. J. Kuikman, “Soil structural aspects of decomposition of organic matter by microorganisms,” Biogeochemistry 11, 213–233 (1990).

    Article  Google Scholar 

  83. H. Weigand and K. Totshe, “Flow and reactivity effects on dissolved organic matter transport in soil columns,” Soil Sci. Soc. Am. J. 62, 1268–1274 (1998).

    Article  Google Scholar 

  84. F. Worrall and T. P. Burt, “Flux of dissolved organic carbon from U.K. rivers,” Gl. Biogeochem. Cycles 21(1), 14–19 (2007).

    Google Scholar 

  85. Y. Yano, Characteristics of Dissolved Organic Matter (DOM) and its Stabilization in a Forest Soil, PhD Theses (Oregon State University, 2002).

    Google Scholar 

  86. A. Zsolnay, “Dissolved organic matter: artifacts, definitions and functions,” Geoderma 113, 187–209 (2003).

    Article  Google Scholar 

  87. M. Zysset and D. Berggren, “Retention and release of dissolved organic matter in Podzol B horizons,” Eur. J. Soil Sci. 52(Iss. 3), 409–421 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Karavanova.

Additional information

Original Russian Text © E.I. Karavanova, 2013, published in Pochvovedenie, 2013, No. 8, pp. 924–936.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavanova, E.I. Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature). Eurasian Soil Sc. 46, 833–844 (2013). https://doi.org/10.1134/S1064229313080048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313080048

Keywords

Navigation