Skip to main content
Log in

Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review)

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The current ideas of polycyclic aromatic hydrocarbons (PAHs) in soils are reviewed. Their natural and anthropogenic sources are discussed, and the mechanisms of their arrival from other environmental components to soils are considered. The main processes typical for PAHs in soils are defined; the sorption, degradation, and translocation features of polyarenes in the soil profile are shown. Attention is paid to the geographical features of the PAH distribution in soils. The use of data on the PAHs in soils for the indication of different natural and technogenic processes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Alekseeva and T. A. Teplitskaya, Spectrofluorimetric Methods for Analyzing Aromatic Hydrocarbons in Natural and Anthropogenic Environments (Gidrometeoizdat, Leningrad, 1981) [in Rusian].

    Google Scholar 

  2. L. I. Belykh, V. A. Seryshev, E. E. Penzina, G. A. Belogolova, V. A. Khutoryanskii, “Benzo[a]pyrene content in some soils of Irkutsk oblast,” Eur. Soil Sci. 31(3), 305–313 (1998).

    Google Scholar 

  3. E. S. Vasil’konov, Yu. A. Zavgorodnyaya, V. V. Demin, and S. Ya. Trofimov, “Interaction of naphthalene and naphthol with organic matrix of soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved. No. 1, 19–24 (2008).

    Google Scholar 

  4. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eur. Soil Sci. 41(11), 1180–1188 (2008).

    Article  Google Scholar 

  5. A. N. Gennadiev, I. S. Del’vig, N. S. Kasimov, and T. A. Teplitskaya, “Polycyclic aromatic hydrocarbons in soils of background territories and natural pedogenesis,” in Monitoring of the Background Contamination of the Environment (Gidrometeoizdat, Leningrad, 1989), No. 5, pp. 149–161 [in Russian].

    Google Scholar 

  6. A. N. Gennadiev and Yu. I. Pikovskii, “The maps of soil tolerance toward pollution with oil products and polycyclic aromatic hydrocarbons: methodological aspects,” Eur. Soil Sci. 40(1), 70–81 (2007).

    Article  Google Scholar 

  7. A. N. Gennadiev, S. S. Chernyanskii, Yu. I. Pikovskii, and T. A. Alekseeva, “Geochemistry of PAHs in relation to the humus and aggregate state of soils,” in Geography and the Environment (Nauka, St. Petersburg, 2003), pp. 124–131 [in Russian].

    Google Scholar 

  8. Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils, Ed. by A. N. Gennadiev and Yu. I. Pikovskii (Izd. Mosk Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  9. S. V. Kakareka, T. I. Kukharchik, L. A. Zanevskaya, P. V. Kurman, V. N. Chuduk, V. S. Khomich, “Modeling and assessment of the Emission of PAHs upon Peat Fires,” Prirodopol’zovanie (Inst. Probl. Ispol’zovan. Prir. Resursov i Ekol., Nats. Akad. Sci., Belarus), No. 10, 58–62 (2004).

    Google Scholar 

  10. E. Clar, Polycyclic Hydrocarbons, Vol. 1 (Academic Press, London, 1964).

    Book  Google Scholar 

  11. N. E. Kosheleva and E. M. Nikiforova, “Long-term dynamics and factors of accumulation of benzo(a)pyrene in urban soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 25–34 ( ).

  12. A. A. Krasnopeeva, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2009).

    Google Scholar 

  13. E. D. Lodygin, S. N. Chukov, V. A. Beznosikov, and D. A. Gabov, “Polycyclic aromatic hydrocarbons in soils of Vasilievsky Island (St. Petersburg),” Eur. Soil Sci. 41(12), 1321–1326 (2008).

    Article  Google Scholar 

  14. E. M. Nikiforova and T. A. Alekseeva, “Polycyclic aromatic hydrocarbons in the soils of roadside ecosystems of Moscow,” Eur. Soil Sci. 35(1), 42–52 (2002).

    Google Scholar 

  15. E. M. Nikiforova, I. S. Kozin, T. A. Teplitskaya, and K. Tsird, “Polycyclic aromatic hydrocarbons in leached chernozems and gray forest soils of natural and technogenic landscapes,” Pochvovedenie, No. 2, 70–78 (1989).

    Google Scholar 

  16. E. M. Nikiforova, I. S. Kozin, and K. Tsird, “Specific features of the contamination of urban soils with polycyclic aromatic hydrocarbons in relation to the impact of heat supply systems,” Pochvovedenie, No. 1, 91–102 (1993).

    Google Scholar 

  17. A. I. Ogloblina, Yu. I. Pikovskii, L. A. Dobryanskii, and M. V. Kurilo, “Distribution of polycyclic aromatic hydrocarbons in coal-bearing deposits of the Donetsk Basin,” Geol. Zh., No. 1, 107–115 (1992).

    Google Scholar 

  18. Yu. I. Pikovskii, A. N. Gennadiev, A. A. Krasnopeeva, and T. A. Puzanova, “Natural and technogenic geochemical hydrocarbon fields in soils: concept, typology, and indicative significance,” in Geochemistry of Landscapes and Geography of Soils. Centennial Anniversary of the Birth of M.A. Glazovskaya (APR, Moscow, 2012), pp. 236–258 [in Russian].

    Google Scholar 

  19. F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  20. V. N. Florovskaya, Yu. I. Pikovskii, and M. E. Ramenskaya, Prebiological Evolution of Carbonic Substances on the Early Earth: Geological Aspect (Knizhn. dom “Librokom”, Moscow, 2012) [in Russian].

    Google Scholar 

  21. A. S. Tsibart, “Polycyclic aromatic hydrocarbons in pyrogenic soils of reserved territory (the Khakass Reserve),” Geogr. Prir. Resur., No. 2, 50–55 (2012).

    Google Scholar 

  22. A. S. Tsibart and A. N. Gennadiev, “Associations of polycyclic aromatic hydrocarbons in fire-affected soils,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 13–20 (2011).

    Google Scholar 

  23. A. S. Tsibart and A. N. Gennadiev, “Pyrogenic polycyclic aromatic hydrocarbons in soils of natural reserves and anthropogenically transformed territories,” in Geochemistry of Landscapes and Geography of Soils. Centennial Anniversary of the Birth of M.A. Glazovskaya (APR, Moscow, 2012), pp. 483–505 [in Russian].

    Google Scholar 

  24. S. S. Chernyanskii, A. N. Gennadiev, T. A. Alekseeva, and Yu. I. Pikovskii, “Organic profile of soddy-gley soil strongly polluted by polycyclic aromatic hydrocarbons,” Eur. Soil Sci. 34(11), 1170–1179 (2001).

    Google Scholar 

  25. Yu. G. Shkuratov, “Modeling of spectral characteristics of Phobos and Deimos,” Astron. Zh., No. 6, 1183–1188 (1986).

    Google Scholar 

  26. E. I. Shurubor, “Polycyclic aromatic hydrocarbons in the soil-plant system of an oil field (Kama River region of Perm oblast),” Eur. Soil Sci. 33(12), 1329–1333 (2000).

    Google Scholar 

  27. E. I. Shurubor and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in irrigated soils of the Chernye Zemli area, Kalmykia,” Pochvovedenie, No. 2, 97–111 (1992).

    Google Scholar 

  28. E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the northern-taiga biocenoses,” Eur. Soil Sci. 45(3), 309–320 (2012).

    Article  Google Scholar 

  29. N. Amellal, J. Portal, T. Vogel, and J. Berthelin, “Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates,” Biodegradation, No. 12, 49–57 (2001).

    Google Scholar 

  30. C. An, G. Huang, H. Yu, J. Wei, W. Chen, G. Li, “Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system,” Chemosphere 81, 1423–1429 (2010).

    Article  Google Scholar 

  31. A. Arias, A. Vazquez-Botello, N. Tombesi, G. Ponce- Velez, H. Freije, J. Marcovecchio, “Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahia Blanca Estuary, Argentina,” Environ. Monit. Assess. 160(1–4), 301–314 (2010).

    Article  Google Scholar 

  32. I. Atanassova and G. W. Brummer, “Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe,” Geoderma 120, 27–34.

  33. S. Baek, R. Field, M. Goldstone, P. Kirk, J. Lester, R. Perry, “A Review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior,” Water Air Soil Pollut. 60, 279–300 (1991).

    Article  Google Scholar 

  34. B. A. M. Bandowe, D. Ruckamp, M. A. L. Braganca, V. Laabs, W. Amelung, C. Martius, W. Wilcke, “Naphthalene production by microorganisms associated with termites: evidence from a microcosm experiment,” Soil Biol. Biochem. 41, 630–639 (2009).

    Article  Google Scholar 

  35. B. A. M. Bandowe, J. Sobocka, and W. Wilcke, “Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: patterns, relation to pahs and vertical distribution,” Environ. Pollut. 159, 539–549 (2011).

    Article  Google Scholar 

  36. R. Barra, C. Castillo, and J. Torres, “Polycyclic aromatic hydrocarbons in the South American environment,” Rev. Environ. Contam. Toxicol. 191, 1–22 (2007).

    Article  Google Scholar 

  37. B. P. Basile, B. S. Middleditch, and J. Oro, “Polycyclic aromatic hydrocarbons in the Murchison meteorite,” Org. Geochem. 5, 211–216 (1984).

    Article  Google Scholar 

  38. C. M. Belcher, “Impacts and wildfires - an Analysis of the K-T event,” in Biological Processes Associated with Impact Events, (Springer, 2006), pp. 221–243.

    Chapter  Google Scholar 

  39. C. A. Belis, I. Offenthaler, and P. Weiss, “Semivolatiles in the forest environment: the case of PAHs,” Plant Ecophysiol. (2001), pp. 47–73.

    Google Scholar 

  40. L. I. Belykh, “Distribution of polycyclic aromatic hydrocarbons in the soil-plant system,” Eur. Soil Sci. 42(9), 1005–1011 (2009).

    Article  Google Scholar 

  41. P. Blomqvist, B. Persson, and M. Simonson, “Fire emissions of organics into the atmosphere,” Fire Technol. 43, 213–231 (2007).

    Article  Google Scholar 

  42. M. Callen, M. de la Cruz, J. Lopez, R. Murillo, M. Navarro, A. Mastral, “Long-range atmospheric transport and local pollution sources on PAH concentrations in a south European urban area. Fulfilling of the European directive,” Water Air Soil Pollut. 190, 271–285 (2008).

    Article  Google Scholar 

  43. C. Collins, M. Fryer, and A. Grosso, “Plant uptake of non-ionic organic chemicals,” Environ. Sci. Technol. 40, 45–52 (2006).

    Article  Google Scholar 

  44. J. C. Colombo, E. Pelletier, C. Brochu, and M. Khallt, “Determination of hydrocarbon sources using N-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio De La Plata Estuary, Argentina,” Environ. Sci. Technol. 23, 888–894 (1989).

    Article  Google Scholar 

  45. G. L. Daly, Y. D. Lei, L. E. Castillo, D. C. G. Muir, F. Wania, “Polycyclic aromatic hydrocarbons in Costa Rican air and soil: a tropical/temperate comparison,” Atmos. Environ. 41, 7339–7350 (2007).

    Article  Google Scholar 

  46. W. De-Gao, Y. Meng, J. Hong-Liang, Zh. Lei, L. Yi-Fan, “Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source,” Arch. Environ. Contam. Toxicol. 56, 173–180 (2009).

    Article  Google Scholar 

  47. A. Dreyer, M. Radke, J. Turunen, and C. Blodau, “Long-term change of aromatic hydrocarbon deposition to peatlands of eastern Canada,” Environ. Sci. Technol. 39, 3918–3924 (2005).

    Article  Google Scholar 

  48. A. Dvorska, G. Lammel, and J. Klanova, “Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe,” Atmos. Environ. 45, 420–427 (2011).

    Article  Google Scholar 

  49. H. Eijsackers, C. A. M. Van Gestel, S. De Jonge, B. Muijs, D. Slijkerman, “Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earth-worms: a mutual interference,” Ecotoxicology 10(1), 35–50 (2001).

    Article  Google Scholar 

  50. R. El-Motaium, M. El-Sayed Hashim, and G. Caria, “Fate and behavior of toxic organic pollutants in plant, soil and irradiated sewage sludge,” NATO Science for Peace and Security Series C: Environmental Security, The Role of Ecological Chemistry in Pollution Research and Sustainable Development, IV, pp. 209–219 (2009).

    Chapter  Google Scholar 

  51. M. Eriksson, G. Dalhammar, and A.-K. Borg-Karlson, “Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site,” Appl. Microbiol. Biotechnol. 53, 619–626 (2000).

    Article  Google Scholar 

  52. E. M. Fitzpatrick, J. M. Jones, M. Pourkashanian, A. B. Ross, A. Williams, and K. D. Bartle, “Mechanistic aspects of soot formation from the combustion of pine wood,” Energy and Fuels 22, 3771–3778 (2008).

    Article  Google Scholar 

  53. M. S. Garcia-Falcoan, B. Soto-Gonzaalez, and J. Simal-Gaandara, “Evolution of the concentrations of polycyclic aromatic hydrocarbons in burnt woodland soils,” Environ. Sci. Technol. 40, 759–763 (2006).

    Article  Google Scholar 

  54. A. R. Geptner, B. Richter, Yu. I. Pikovskii, S. S. Chernyansky, T. A. Alekseeva, “Hydrothermal polycyclic aromatic hydrocarbons in marine and lagoon sediments at the intersection between Tjornes fracture zone and recent rift zone (Skjálfandi and Öxarfjör∂ur Bays, Iceland),” Mar. Chem. 101, 153–165 (2006).

    Article  Google Scholar 

  55. B. Glaser, A. Dreyer, M. Bock, S. Fielder, M. Mehring, T. Heitmann, “Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures,” Environ. Sci. Technol. 39, 3911–1917 (2005).

    Article  Google Scholar 

  56. T. Gocht, J. Barth, M. Epp, M. Jochmann, M. Bless- ing, T. Schmidt, and P. Grathwohl, “Indications for pedogenic formation of perylene in a terrestrial soil profile: depth distribution and first results from stable carbon isotope ratios,” Appl. Geochem. 22, 2652–2663 (2007).

    Article  Google Scholar 

  57. F. Gonzalez-Vila, J. Lopez, F. Martin, and J. del Rio, “Determination in soils of PAH produced by combustion of biomass under different conditions,” Fresenius J. Anal. Chem. 339, 750–753 (1991).

    Article  Google Scholar 

  58. G. Gramss, K. Voigt, and B. Kirsche, “Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils,” Biodegradation 10, 51–62 (1999).

    Article  Google Scholar 

  59. S. Gregory, D. Shea, and E. Guthrie-Nichols, “Impact of vegetation on sedimentary organic matter composition and polycyclic aromatic hydrocarbon attenuation,” Environ. Sci. Technol. 39(14), 5285–5292 (2005).

    Article  Google Scholar 

  60. R. G. Harvey, Polycyclic Aromatic Hydrocarbons (Wiley, New York, 1997).

    Google Scholar 

  61. M. Howsam, K. Jones, and P. Ineson, “PAHs in the soils of a mature, mixed-deciduous (Quercus-Fraxinus) woodland and the surrounding pasture,” Water Air Soil Pollut. 121, 379–398 (2000).

    Article  Google Scholar 

  62. D. M. Hudgins, “From Interstellar polycyclic aromatic compounds and ices to astrobiology,” Abstracts 23rd Int. Symp. on Polycyclic Aromatic Compounds (ISPAC 23), Munster, Germany (2011), p. 88.

    Google Scholar 

  63. S. Hwang, N. Ramirez, T. J. Cutright, and L.-K. Ju, “The role of soil properties in pyrene sorption and desorption,” Water Air Soil Pollut. 143, 65–80 (2003).

    Article  Google Scholar 

  64. J. Iqbal, C. Metosh-Dickey, and R. Portier, “Temperature effects on bioremediation of PAHs and PCP contaminated South Louisiana Soils: a laboratory mesocosm study,” J. Soils Sediments 7(3), 153–158 (2007).

    Article  Google Scholar 

  65. B. Jenkins, A. D. Jones, S. Q. Turn, and R. B. Williams, “Emission factors for polycyclic aromatic hydrocarbons from biomass burning,” Environ. Sci. Technol. 30, 2462–2469 (1996).

    Article  Google Scholar 

  66. Y.-F. Jiang, X.-T. Wang, F. Wanga, Y. Jia, M.-H. Wu, G.-Y. Sheng, J.-M. Fu, “Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China,” Chemosphere, 75, 1112–1118 (2009).

    Article  Google Scholar 

  67. A. Johnsen and U. Karlson, “Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation,” Appl. Microbiol. Biotechnol, 76, 533–543 (2007).

    Article  Google Scholar 

  68. L. Ke, T. W. Y. Wong, Y. S. Wong, and N. F. Y. Tam, “Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill,” Marine Pollut. Bull., 45, 339–347 (2002).

    Article  Google Scholar 

  69. S. D. Killops and M. S. Massourd, “Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires,” Org. Geochem. 1, 1–7 (1992).

    Article  Google Scholar 

  70. M. Kohler and T. Künniger, “Emissions of polycyclic aromatic hydrocarbons (PAH) from creosoted railroad ties and their relevance for life cycle assessment (LCA),” Eur. J. Wood Wood Products 61, 117–124 (2003).

    Google Scholar 

  71. A. Krauss, W. Wilcke, C. Martius, A. G. Bandeira, M. V. B. Garcia, W. Amelung, “Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment,” Environ. Pollut. 135, 143–154 (2005).

    Article  Google Scholar 

  72. M. Krauss, W. Wilcke, and W. Zech, “Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate,” Environ. Pollut. 110, 79–88 (2000).

    Article  Google Scholar 

  73. L. Kurteeva, S. Morozov, and A. Anshits, “The sources of carcinogenic PAH emission in aluminium production using Soderberg cells,” NATO Science Series IV: Earth and Environmental Sciences, vol. 65 Advances in the Geological Storage of Carbon Dioxide. Part I, pp. 57–65 (2006).

    Google Scholar 

  74. S. Labana, M. Kapur, D. Malik, D. Prakash, and R. Jain, “Diversity, biodegradation and bioremediation of polycyclic aromatic hydrocarbons,” in Environmental Bioremediation Technologies, pp. 409–443 (2007).

    Chapter  Google Scholar 

  75. P. Lagustafson, C. Östman, and G. Sallsten, “Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating,” Environ. Sci. Technol. 42, 5074–5080 (2008).

    Article  Google Scholar 

  76. A. Li, “PAHs in Comets: An Overview,” ESO Astrophysics Symposia Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength, 161–175 (2009).

    Google Scholar 

  77. H. Li, Y. M. Luo, J. Song, L. H. Wu, P. Christie, “Degradation of benzo(a)pyrene in An experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides),” Environ. Geochem. Health 28, 183–188 (2006).

    Article  Google Scholar 

  78. D. Lin, L. Zhu, W. He, and Y. Tu, “Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air,” J. Agric. Food Chem. 54, 3658–3662 (2006).

    Article  Google Scholar 

  79. G. Liu, Z. Niu, D. Niekerk, J. Xue, L. Zheng, “Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis and toxicology,” Rev. Environ. Contam. Toxicol 192, 1–28 (2008).

    Article  Google Scholar 

  80. O. L. Maioli, B. A. Knoppers, and D. A. Azevedo, “Sources, distribution and variability of hydrocarbons in total atmospheric suspended particulates of two Brazilian areas influenced by sugarcane burning,” J. Atmos. Chem. 64, 159–178 (2009).

    Article  Google Scholar 

  81. B. Maliszewska-Kordybach, “Dissipation of polycyclic aromatic hydrocarbons in freshly contaminated soils - the effect of soil physicochemical properties and aging,” Water Air Soil Pollut. 168, 113–128 (2005).

    Article  Google Scholar 

  82. B. Maliszewska-Kordybach, A. Klimkowicz-Pawlas, B. Smreczak, and T. Stuczynski, “Relationship between soil concentrations of pahs and their regional emission indices,” Water Air Soil Pollut. 213, 319–330 (2010).

    Article  Google Scholar 

  83. M. Mandalakis, O. Gustafsson, T. Alsberg, A. Ege- back, C. Reddy, L. Xu, J. Klanova, I. Holubek, E. Stephanou, “Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites,” Environ. Sci. Technol. 39, 2976–2982 (2005).

    Article  Google Scholar 

  84. L. Marynowski, A. C. Scott, M. Zaton, H. Parent, A. C. Garrido, “First multi-proxy record of Jurassic wildfires from Gondwana: evidence from the Middle Jurassic of the Neuquen Basin, Argentina,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 129–136 (2011).

    Article  Google Scholar 

  85. P. Masclet, H. Cachier, C. Liousse, and H. Wortham, “Emissions of polycyclic aromatic hydrocarbons by savanna fires,” J. Atmospher. Chemi. 22, 41–54 (1995).

    Article  Google Scholar 

  86. A. Mastral, M. Callean, and T. Garcia, “Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion,” Environ. Sci. Technol. 33, 3177–3184 (1999).

    Article  Google Scholar 

  87. E. Matzner, “Annual rates of deposition of polycyclic aromatic hydrocarbons in different forest ecosystems,” Water Air Soil Pollut. 21, 425–434 (1984).

    Article  Google Scholar 

  88. C. McRae, C. G. Sun, C. McMillan, C. E. Snape, A. E. Fallick, “Sourcing of fossil fuel-derived PAH in the environment,” Polycycl. Aromat. Compounds 20, 97–109 (2000).

    Article  Google Scholar 

  89. P. Medeiros and B. Simoneit, “Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests,” Environ. Sci. Technol. 42, 8310–8316 (2008).

    Article  Google Scholar 

  90. R. Mohanraj and P. Azeez, “Polycyclic aromatic hydrocarbons and their toxic potency in air,” Resonance 8, 20–27 (2003).

    Article  Google Scholar 

  91. J. Molto, R. Font, A. Galvez, M. Munoz, A. Pequenin, “Emissions of polychlorodibenzodioxin/furans (PCDD/Fs), dioxin-like polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and volatile compounds produced in the combustion of pine needles and cones,” Energy Fuels 24, 1030–1036 (2010).

    Article  Google Scholar 

  92. M. Nadal, J. Wargent, K. Jones, N. Paul, M. Schuh- macher, J. Domingo, “Influence of UV-B radiation and temperature on photodegradation of PAHs: preliminary results,” J. Atmos. Chem. 55, 241–252 (2006).

    Article  Google Scholar 

  93. D. Nakajima, S. Nagame, H. Kuramochi, K. Sugita, S. Kageyama, T. Shiozaki, T. Takemura, F. Shiraishi, S. Goto, “Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood,” Bull. Environ. Contam. Toxicol. 79, 221–225 (2007).

    Article  Google Scholar 

  94. A. Nemr, A. Khaled, A. El-Sikaily, T. Said, A. Abd-Allah, “Distribution and sources of polycyclic aromatic hydrocarbon in surface sediments of the Suez Gulf,” Environ. Monitor. Assessment 118, 89–112 (2006).

    Article  Google Scholar 

  95. T. Nussbaumer, “Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction,” Energy Fuels 17, 1510–1521 (2003).

    Article  Google Scholar 

  96. N. Oahn, L. Reutergardh, and N. Dung, “Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels,” Environ. Sci. Technol. 33, 2703–2709 (1999).

    Article  Google Scholar 

  97. S. Ouvrard, D. Lapole, and J. Morel, “Root exudates impact on phenanthrene availability,” Water Air Soil Pollut. 6, 343–352 (2006).

    Google Scholar 

  98. C. Pies, Th. Ternes, and Th. Hofmann, “Identifying sources of polycyclic aromatic hydrocarbons (PAHs) in soils: distinguishing point and non-point sources using an extended PAH spectrum and N-alkanes,” J. Soils Sediments 8, 312–322 (2008).

    Article  Google Scholar 

  99. M. Radojevic, “Chemistry of forest fires and regional haze with emphasis on Southeast Asia,” Pure Appl. Geophys 160, 157–187 (2003).

    Article  Google Scholar 

  100. T. Ramdahl and G. Bechler, “Characterization of polynuclear aromatic hydrocarbon derivatives in emissions from wood and cereal straw combustion,” Anal. Chim. Acta 144, 83–91 (1982).

    Article  Google Scholar 

  101. N. Ratola, A. Alves, and E. Psillakis, “Biomonitoring of polycyclic aromatic hydrocarbons contamination in the island of Crete using pine needles,” Water Air Soil Pollut. 215, 189–203 (2011).

    Article  Google Scholar 

  102. L. Renzi and W. Peirong, “PAH in Fossil fuels and their geochemical significance,” J. Southeast Asian Earth Sci. 5, 257–262 (1991).

    Article  Google Scholar 

  103. B. P. Ressler, H. Kneifel, and J. Winter, “Bioavailability of polycyclic aromatic hydrocarbons and formation of humic acid-like residues during bacterial PAH degradation,” Appl. Microbiol. Biotechnol. 53, 85–91 (1999).

    Article  Google Scholar 

  104. K. Sato, H. Li, Y. Tanaka, S. Ogawa, Y. Iwasaki, A. Takami, S. Hatakeyama, “Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008,” J. Atmos. Chem. 61, 243–257 (2008).

    Article  Google Scholar 

  105. R. Scelza, M. Rao, and L. Gianfreda, “Properties of an aged phenanthrene-contaminated soil and its response to bioremediation processes,” J. Soils Sediments 10, 545–555 (2010).

    Article  Google Scholar 

  106. J. Schauer, M. Kleeman, G. Cass, and B. Simoneit, “Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood,” Environ. Sci. Technol. 35, 1716–1728 (2001).

    Article  Google Scholar 

  107. G. S. Serkovskaya, “Carcinogenic properties of products from the processing of coal, wood and peat,” Chem. Technol. Fuels Oils 35, 113–122 (1999).

    Article  Google Scholar 

  108. M. Shimmo, K. Saarnio, P. Aalto, K. Hartonen, T. Hyotylainen, M. Kulmala, M. Riekkola, “Particle size distribution and gas-particle partition of polycyclic aromatic hydrocarbons in Helsinki urban area,” J. Atmos. Chem. 47, 223–241 (2004).

    Article  Google Scholar 

  109. M. Simcik and J. Offenberg, “Polycyclic aromatic hydrocarbons in the Great lakes,” Hdb. Environ. Chem. 5, 307–353 (2006).

    Google Scholar 

  110. B. Simoneit, “A review of biomarker compounds as source indicators and tracers for air pollution,” Environ. Sci. Pollut. Res. 6(3), 159–169 (1999).

    Article  Google Scholar 

  111. S. Simonich and R. Hites, “Organic pollutant accumulation in vegetation,” Environ. Sci. Technol. 29, 2905–2914 (1995).

    Article  Google Scholar 

  112. S. Simonich and R. Hites, “Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons,” Environ. Sci. Technol. 28, 939–943 (1994).

    Article  Google Scholar 

  113. A. Šisovic, A. Škrbec, V. Vadjic, N. Kalini, J. Hrsak, “PAH levels and profiles in the suspended particulate matter in Zagreb through four seasons,” Environ. Monitor. Assessment, 74, 217–224 (2002).

    Article  Google Scholar 

  114. K. Smith, G. Thomas, and K. Jones, “Seasonal and species differences in the air-pasture transfer of PAHs,” Environ. Sci. Technol. 35, 2156–2165 (2001).

    Article  Google Scholar 

  115. K. Srogi, “Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review,” Environ. Chem. Lett. 5, 169–195 (2007).

    Article  Google Scholar 

  116. E. Teinemaa and U. Kirso, “Photochemical transformation of polycyclic aromatic hydrocarbons on solid particles,” Polycycl. Aromat. Compounds 148, 275–284 (1999).

    Article  Google Scholar 

  117. S. Thiele and G. W. Brummer, “Bioformation of polycyclic aromatic hydracarbons in soil under oxygen deficient conditions,” Soil Biol. Biochem. 34, 733–735 (2002).

    Article  Google Scholar 

  118. M. Trapido, “Polycyclic aromatic hydrocarbons in estonian soil: contamination and profiles,” Environ. Pollut. 105, 67–74 (1999).

    Article  Google Scholar 

  119. A. Uhler and S. Emsbo-Mattingly, “Environmental stability of PAH source indices in pyrogenic tars,” Bull. Environ. Contam. Toxicol. 76, 689–696 (2006).

    Article  Google Scholar 

  120. A. Vergnoux, L. Malleret, L. Asia, P. Doumenq, F. Theraulaz, “Impact of forest fires on PAH level and distribution in soils,” Environ. Res. 111, 193–198 (2011).

    Article  Google Scholar 

  121. K. Wammer and C. Peters, “Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study,” Environ. Sci. Technol. 39, 2571–2578 (2005).

    Article  Google Scholar 

  122. Z. Wang, M. Fingas, Y. Y. Shu, L. Sigouin, M. Laudri- ault, P. Lambert, R. Turpin, P. Campagna, J. Mullin, “Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—the 1994 mobile burn study,” Environ. Sci. Technol. 33, 3100–3109 (1999).

    Article  Google Scholar 

  123. A. Watts, T. Ballestero, and K. Gardner, “Soil and atmospheric inputs to PAH concentrations in salt marsh plants,” Water Air Soil Pollut. 189, 253–263 (2008).

    Article  Google Scholar 

  124. W. Wilcke, “Polycyclic aromatic hydracarbons (PAHs) in soil—a review,” J. Plant Nutr. Soil Sci. 163, 229–248 (2000).

    Article  Google Scholar 

  125. W. Wilcke, “Review. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil,” Geoderma 141, 157–166 (2007).

    Article  Google Scholar 

  126. W. Wilcke, W. Amelung, M. Krauss, C. Martius, A. Bandeira, M. Garcia, “Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil,” Organ. Geochem. 34, 1405–1417 (2003).

    Article  Google Scholar 

  127. W. Wilcke, S. Muller, N. Kanchanakool, C. Niamskul, W. Zech, “Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok,” Geoderma, 297-309 (1999).

    Google Scholar 

  128. A. Yamazoe, O. Yagi, and H. Oyaizu, “Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp.,” Biotechnol. Lett. 26, 479–486 (2004).

    Article  Google Scholar 

  129. J. Yan, X. You, X. Li, M. Ni, X. Yin, K. Cen, “Performance of PAHs emission from bituminous coal combustion,” J. Zhejiang Univ. 5, 1554–1564 (2004).

    Article  Google Scholar 

  130. W. W. Youngblood and M. Blumer, “Soils and recent marine sediments contain a complex polycyclic aromatic,” Geochim. Cosmochim. Acta 39, 1303–1314 (1975).

    Article  Google Scholar 

  131. H. B. Zhang, Y. M. Luo, M. H. Wong, Q. G. Zhao, G. L. Zhang, “Distributions and concentrations of PAHs in Hong Kong soils,” Environ. Pollut. 141, 107–114 (2006).

    Article  Google Scholar 

  132. X. L. Zhang, S. Tao, W. X. Liu, Y. Yang, Q. Zuo, S. Z. Liu, “Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach,” Environ. Sci. Technol. 39, 9109–9114 (2005).

    Article  Google Scholar 

  133. Y. Zhang and S. Tao, “Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004,” Atmos. Environ. 43, 812–819 (2009).

    Article  Google Scholar 

  134. Y. Zhang, S. Tao, J. Cao, and R. Coveney, “Emission of polycyclic aromatic hydrocarbons in china by county,” Environ. Sci. Technol. 41, 683–687 (2007).

    Article  Google Scholar 

  135. Y. Zhang, Sh. Zhu, R. Xiao, J. Wang, F. Li, “Vertical transport of polycyclic aromatic hydrocarbons in different particle-size fractions of sandy soils,” Environ. Geol. 53, 1165–1172 (2008).

    Article  Google Scholar 

  136. V. S. Zubkov, “Tendencies in the distribution and hypotheses of the genesis of condensed naphthides in magmatic rocks from various geodynamic environments,” Geochem. Intern. 8, 741–757 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsibart.

Additional information

Original Russian Text © A.S. Tsibart, A.N. Gennadiev, 2013, published in Pochvovedenie, 2013, No. 7, pp. 788–802.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsibart, A.S., Gennadiev, A.N. Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review). Eurasian Soil Sc. 46, 728–741 (2013). https://doi.org/10.1134/S1064229313070090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313070090

Keywords

Navigation