Skip to main content

Humification and nonhumification pathways of the organic matter stabilization in soil: A review

Abstract

Polymeric and supramolecular models of humic substances (HSs) are considered. It has been noted that the HSs in natural objects can simultaneously occur in the forms of macromolecular polymers and supramolecularly organized monomers; macromolecular polymers of HSs can have some properties of suprastructures or be associated into aggregates, and covalent bonds can be formed between the monomers of supramolecules. Mineral particles of soil act as catalysts in chemical reactions between individual compounds, sorbents of biomolecules, and a surface for self-assembling HSs. It is supposed that the combination of such physicochemical processes and phenomena in soil as cementation, charring, incrustation, occlusion, sedimentation, sorption, coagulation, flocculation, encapsulation, complexation, and intercalation, as well as the entrapment of macroorganic, particulate, and soluble organic substances in micropores, can be as important for the stabilization of organic matter as the interactions between biomolecules with the formation of HSs.

This is a preview of subscription content, access via your institution.

References

  1. D. A. Knyazev, A. D. Fokin, and A. V. Ochkin, “Free-Radical Condensation as a Natural Mechanism of the Formation of Humic Acids,” Eur. Soil Sci. 42(9), 984–988 (2009).

    Article  Google Scholar 

  2. M. M. Kononova, Organic Matter of Soil (Izd. Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  3. A. Yu. Kudeyarova, “Application of Basic Chemical Concepts to Understanding the Formation and Transformation Mechanisms of Humic Substances: A Revue of Publications and Own Experimental Data,” Eur. Soil Sci. 40(9), 934–948 (2007).

    Article  Google Scholar 

  4. E. Yu. Milanovskii, “Amphiphilous Components of Soil Humic Substances,” Eur. Soil Sci. 33(6), 617–625 (2000).

    Google Scholar 

  5. E. Yu. Milanovskii and E. V. Shein, “Functional Role of Amphiphilic Humus Components in Humus Structure Formation and Soil Genesis,” Eur. Soil Sci. 35(10), 1064–1075 (2002).

    Google Scholar 

  6. D. S. Orlov, Soil Humus Acids and a General Theory of Humification (Izd. Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  7. D. S. Orlov, “Organic Substances of Russian Soils,” Eur. Soil Sci. 31(9), 946–953 (1998).

    Google Scholar 

  8. V. M. Semenov, L. A. Ivannikova, and A. S. Tulina, “Stabilization of Organic Matter in Soil,” Agrokhimiya, No. 10, 77–96 (2009).

    Google Scholar 

  9. S. N. Chukov, “Study of Humus Acids in Anthropogenically Disturbed Soils Using 13C-NMR Spectroscopy,” Eur. Soil Sci. 31(9), 979–986 (1998).

    Google Scholar 

  10. V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of Humic Acids in Zonal Soils from 13C NMR Data,” Eur. Soil Sci. 44(9), 976–983 (2011).

    Article  Google Scholar 

  11. S. Abiven, S. Menasseri, and C. Chenu, “The Effects of Organic Inputs over Time on Soil Aggregate Stability—A Literature Analysis,” Soil Biol. Biochem. 41, 1–12 (2009).

    Article  Google Scholar 

  12. C. N. Albers, G. T. Banta, O. S. Jacobsen, and P. E. Hansen, “Characterization and Structural Modelling of Humic Substances in Field Soil Displaying Significant Differences from Previously Proposed Structures,” Eur. J. Soil Sci. 59, 693–705 (2008).

    Article  Google Scholar 

  13. A. J. A. Aquino, D. Tunega, and H. Pašalic-, G. E. Schaumann, G. Haberhauer, M. H. Gerzabek, and H. Lischka, “Study of Solvent Effect on the Stability of Water Bridge-Linked Carboxyl Groups in Humic Acid Models,” Geoderma 169, 20–26 (2011).

    Article  Google Scholar 

  14. M. Baalousha, M. Motelica-Heino, S. Galaup, and P. Le Coustumer, “Supramolecular Structure of Humic Acids by TEM with Improved Sample Preparation and Staining,” Microscopy Res. Technique 66, 299–306 (2005).

    Article  Google Scholar 

  15. R. Baigorri, M. Fuentes, G. González-Gaitano, and J. M. Garcia-Mina, “Analysis of Molecular Aggregation in Humic Substances in Solution,” Colloids and Surfaces. A: Physicochemical and Engineering Aspects 302, 301–306 (2007).

    Article  Google Scholar 

  16. C. J. Bronick and R. Lal, “Soil Structure and Management: A Review,” Geoderma 124, 3–22 (2005).

    Article  Google Scholar 

  17. J. Burdon, “Are the Traditional Concepts of the Structures of Humic Substances Realistic?,” Soil Sci. 166, 752–769 (2001).

    Article  Google Scholar 

  18. T. Chiti, R. E. M. Neubert, I. A. Janssens, G. Certini, J. Curiel Yuste, C. Sirignano, “Radiocarbon Dating Reveals Different Past Managements of Adjacent Forest Soils in the Campine Region, Belgium,” Geoderma 149, 137–142 (2009).

    Article  Google Scholar 

  19. M. Diallo, A. Simpson, P. Gassman, J. L. Faulon, J. H. Johnson, W. A. Goddrd, P. G. Hatcher, “3-D Structural Modeling of Humic Acids through Experimental Characterization, Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Chelsea Soil Humic Acid,” Environ. Sci. Technol. 37, 1783–1793 (2003).

    Article  Google Scholar 

  20. X. Feng, L. L. Nielsen, and M. J. Simpson, “Responses of Soil Organic Matter and Microorganisms to Freeze-Thaw Cycles,” Soil Biol. Biochem. 39, 2027–2037 (2007).

    Article  Google Scholar 

  21. K. Ekschmitt, M. Liu, S. Vetter, O. Fox, V. Wolters, “Strategies Used by Soil Biota to Overcome Soil Organic Matter Stability -Why Is Dead Organic Matter Left over in the Soil?,” Geoderma 128 (1–2), 167–176 (2005).

    Article  Google Scholar 

  22. E. Giannakopoulos, M. Drosos, and Y. Deligiannakis, “A Humic-Acid-Like Polycondensate Produced with No Use of Catalyst,” J. Coll. Interface Sci. 336, 59–66 (2009).

    Article  Google Scholar 

  23. A. S. Grandy and J. C. Neff, “Molecular C Dynamics Downstream: The Biochemical Decomposition Sequence and Its Impact on Soil Organic Matter Structure and Function,” Sci. Total Environ. 404, 297–307 (2008).

    Article  Google Scholar 

  24. T. Grinhut, Y. Hadar, and Y. Chen, “Degradation and Transformation of Humic Substances by Saprotrophic Fungi: Processes and Mechanisms,” Fungal Biol. Rev 21, 179–189 (2007).

    Article  Google Scholar 

  25. S. Haile-Mariam, H. P. Collins, S. Wright, and E. A. Paul, “Fractionation and Long-Term Laboratory Incubation to Measure Soil Organic Matter Dynamics,” Soil Sci. Soc. Am. J. 72, 370–378 (2008).

    Article  Google Scholar 

  26. M. H. B. Hayes, “Solvent Systems for the Isolation of Organic Components from Soils,” Soil Sci. Soc. Am. J. 70, 986–994 (2006).

    Article  Google Scholar 

  27. R. J. Haynes and R. Naidu, “Influence of Lime, Fertilizer and Manure Applications on Soil Organic Matter Content and Soil Physical Conditions: A Review,” Nutrient Cycling in Agroecosystems 51, 123–137 (1998).

    Article  Google Scholar 

  28. P.-H. Hsu and P. G. Hatcher, “New Evidence for Covalent Coupling of Peptides to Humic Acids Based on 2D NMR Spectroscopy: A Means for Preservation,” Geochimica Cosmochimica Acta 69, 4521–4533 (2005).

    Article  Google Scholar 

  29. H. H. Janzen, “The Soil Carbon Dilemma: Shall We Hoard It or Use It?,” Soil Biol. Biochem. 38, 419–424 (2006).

    Article  Google Scholar 

  30. A. Jokic, H.-R. Schulten, J. N. Cutler, M. Schnitzer, P. M. Huang, “A Significant Abiotic Pathway for the Formation of Unknown Nitrogen in Nature,” Geophys. Rev. Lett. 31, 4 (2004).

    Article  Google Scholar 

  31. M. Keiluweit and M. Kleber, “Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems,” Environ. Sci. Technol. 43(10), 3421–3429 (2009).

    Article  Google Scholar 

  32. B. P. Kelleher and A. J. Simpson, “Humic Substances in Soils: Are They Really Chemically Distinct?,” Environ. Sci. Technol. 40, 4605–4611 (2006).

    Article  Google Scholar 

  33. S. J. Kemmitt, C. V. Lanyon, I. S. Waite, Q. Wen, T. M. Addiscott, N. R. A. Bird, A. G. O’Donnell, P. C. Brookes, “Mineralization of Native Soil Organic Matter Is not Regulated by the Size, Activity or Composition of the Soil Microbial Biomass — A New Perspective,” Soil Biol. Biochem. 40, 61–73 (2008).

    Article  Google Scholar 

  34. M. Kleber and M. G. Johnson, “Advances in Understanding the Molecular Structure of Soil Organic Matter: Implications for Interactions in the Environment,” Advan. Agron. 106, 77–142 (2010).

    Article  Google Scholar 

  35. M. Kleber, P. S. Nico, A. Plante, T. Filley, M. Kramer, C. Swanston, P. Sollins, “Old and Stable Soil Organic Matter Is Not Necessarily Chemically Recalcitrant: Implications for Modeling Concepts and Temperature Sensitivity,” Gl. Change Biol. (2010).

    Google Scholar 

  36. M. Kleber, P. Sollins, and R. Sutton, “A Conceptual Model of Organo-Mineral Interactions in Soils: Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces,” Biogeochemistry 85, 9–24 (2007).

    Article  Google Scholar 

  37. H. Knicker, “Black Nitrogen” — An Important Fraction in Determining the Recalcitrance of Charcoal,” Organic Geochem. 41, 947–950 (2010).

    Article  Google Scholar 

  38. H. Knicker, “Biogenic Nitrogen in Soils As Revealed by Solid-State Carbon-13 and Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy,” J. Environ. Qual. 29, 715–723 (2000).

    Article  Google Scholar 

  39. H. Knicker, A. Hilscher, F. J. González-Vila, and G. Almendros, “A New Conceptual Model for the Structural Properties of Char Produced During Vegetation Fires,” Organic Geochem. 39, 935–939 (2008).

    Article  Google Scholar 

  40. H. Knicker and J. O. Skjemstad, “Nature of Organic Carbon and Nitrogen in Physically Protected Organic Matter of Some Australian Soils as Revealed by Solid-State 13C and 15N NMR Spectroscopy,” Austr. J. Soil Res. 38, 113–127 (2000).

    Article  Google Scholar 

  41. I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, B. Marschner, M. von Lützow, “An Integrative Approach of Organic Matter Stabilization in Temperate Soils: Linking Chemistry, Physics, and Biology,” J. Plant Nutr. and Soil Sci 171, 5–13 (2008).

    Article  Google Scholar 

  42. E. Krull, J. A. Baldock, and J. O. Skjemstad, “Importance of Mechanisms and Processes of the Stabilisation of Soil Organic Matter for Modelling Carbon Turnover,” Funct. Plant Biol 30, 207–222 (2003).

    Article  Google Scholar 

  43. D. A. Laird, M. A. Chappell, D. A. Martens, R. L. Wershaw, M. Thompson, “Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions,” Geoderma 143, 115–122 (2008).

    Article  Google Scholar 

  44. J. Lehmann, D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, C. Jacobsen, “Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales,” Nature Geoscience 1, 238–242 (2008).

    Article  Google Scholar 

  45. K. Lorenz, R. Lal, C. M. Preston, and K. G. J. Nierop, “Strengthening the Soil Organic Carbon Pool by Increasing Contributions from Recalcitrant Aliphatic Bio(Macro)Molecules,” Geoderma 142, 1–10 (2007).

    Article  Google Scholar 

  46. P. MacCarthy, “The Principles of Humic Substances,” Sci. Soil, 166, 738–751 (2001).

    Article  Google Scholar 

  47. J. Magid, C. Kjærgaard, A. Gorissen, and P. J. Kuikman, “Drying and Rewetting of a Loamy Sand Soil Did not Increase the Turnover of Native Organic Matter, but Retarded the Decomposition of Added 14C-Labelled Plant Material,” Soil Biol. Biochem. 31, 595–602 (1999).

    Article  Google Scholar 

  48. N. Mahieu, D. C. Olk, and E. W. Randall, “Accumulation of Heterocyclic Nitrogen in Humified Organic Matter: A 15N NMR Study of Lowland Rice Soils,” Eur. J. Soil Sci. 51, 379–389 (2000).

    Google Scholar 

  49. J.-D. Mao, W.-G. Hu, K. Schmidt-Rohr, G. Davies, E. A. Ghabbour, B. Xing, “Quantitative Characterization of Humic Substances by Solid-State Carbon-13 Nuclear Magnetic Resonance,” Soil Sci. Soc. Am. J. 64, 873–884 (2000).

    Article  Google Scholar 

  50. J.-D. Mao, B. Xing, and K. S. Chmidt-Rohr, “New Structural Information on a Humic Acid from Two-Dimensional 1H-13C Correlation Solid-State Nuclear Magnetic Resonance,” Environ. Sci. Technol. 35, 1928–1934 (2001).

    Article  Google Scholar 

  51. R. Mikutta, M. Kleber, M. S. Torn, and R. Jahn, “Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance?,” Biogeochemistry 77, 25–56 (2006).

    Article  Google Scholar 

  52. A. Nebbioso and A. Piccolo, “Advances in Humeomics: Enhanced Structural Identification of Humic Molecules after Size Fractionation of a Soil Humic Acid,” Anal. Chim. Acta 720, 77–90 (2012).

    Article  Google Scholar 

  53. K. A. Nichols and S. F. Wright, “Comparison of Glomalin and Humic Acid in Eight Native U.S. Soils,” Soil Sci. 170, 985–997 (2005).

    Article  Google Scholar 

  54. D. C. Olk, “A Chemical Fractionation for Structure — Function Relations of Soil Organic Matter in Nutrient Cycling,” Soil Sci. Soc. Am. J. 70, 1013–1022 (2006).

    Article  Google Scholar 

  55. D. C. Olk and E. G. Gregorich, “Overview of the Symposium Proceedings, “Meaningful Pools in Determining Soil Carbon and Nitrogen Dynamics,” Soil Sci. Soc. Am. J. 70, 967–974 (2006).

    Article  Google Scholar 

  56. M. Pédrot, A. Dia, and M. Davranche, “Dynamic Structure of Humic Substances: Rare Earth Elements as a Fingerprint,” J. Coll. Interface Sci. 345, 206–213 (2010).

    Article  Google Scholar 

  57. I. V. Perminova, “Size Exclusion Chromatography of Humic Substances: Complexities of Data Interpretation Attributable to Non-Size Exclusion Effects,” Soil Science 164, 834–840 (1999).

    Article  Google Scholar 

  58. A. Piccolo, “The Supramolecular Structure of Humic Substances,” Soil Sci. 166, 810–832 (2001).

    Article  Google Scholar 

  59. A. Piccolo, “The Supramolecular Structure of Humic Substances: A Novel Understanding of Humus Chemistry and Implications in Soil Science,” Advances in Agronomy 75, 57–134 (2002).

    Article  Google Scholar 

  60. M. C. Rillig, B. A. Caldwell, H. A. B. Wosten, and P. Sollins, “Role of Proteins in Soil Carbon and Nitrogen Storage: Controls on Persistence,” Biogeochemistry 85, 25–44 (2007).

    Article  Google Scholar 

  61. G. E. Schaumann, “Soil Organic Matter Beyond Molecular Structure Part I: Macromolecular and Supramolecular Characteristics,” J. Plant Nutr. Soil Sci. 169, 145–156 (2006).

    Article  Google Scholar 

  62. G. E. Schaumann, “Soil Organic Matter Beyond Molecular Structure Part II: Amorphous Nature and Physical Aging,” J. Plant Nutr. Soil Sci. 169, 157–167 (2006).

    Article  Google Scholar 

  63. G. E. Schaumann and S. Thiele-Bruhn, “Molecular Modeling of Soil Organic Matter: Squaring the Circle?,” Geoderma 166, 1–14 (2011).

    Article  Google Scholar 

  64. J. P. Schimel and M. N. Weintraub, “The Implications of Exoenzyme Activity on Microbial Carbon and Nitrogen Limitation in Soil: A Theoretical Model,” Soil Biol. Biochem. 35(4), 549–563 (2003).

    Article  Google Scholar 

  65. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögle-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, S. E. Trumbore, “Persistence of Soil Organic Matter as an Ecosystem Property,” Nature 478, 49–56 (2011).

    Article  Google Scholar 

  66. H.-R. Schulten and P. Leinweber, “New Insights into Organic-Mineral Particles: Composition, Properties and Models of Molecular Structure,” Biol. Fertility Soils 30, 399–432 (2000).

    Article  Google Scholar 

  67. H.-R. Schulten and M. Schnitzer, “A State of the Art Structural Concept for Humic Substances,” Naturwissenschaften 80, 29–30 (1993).

    Article  Google Scholar 

  68. H.-R. Schulten and M. Schnitzer, “Chemical Model Structures for Soil Organic Matter and Soils,” Soil Sci. 162, 115–130 (1997).

    Article  Google Scholar 

  69. H.-R. Schulten and M. Schnitzer, “The Chemistry of Soil Organic Nitrogen: A Review,” Biol. Fertil. Soils 26, 1–15 (1998).

    Article  Google Scholar 

  70. A. J. Simpson, “Determining the Molecular Weight, Aggregation, Structures and Interactions of Natural Organic Matter Using Diffusion Ordered Spectroscopy,” Magn. Reson. Chem. 40, 72–S82 (2002).

    Article  Google Scholar 

  71. A. J. Simpson, W. L. Kingery, M. H. B. Hayes, M. Spraul, E. Humpfer, P. Dvortsak, R. Kerssebaum, M. Godejohann, M. Hofmann, “Molecular Structures and Associations of Humic Substances in the Terrestrial Environment,” Naturwissenschaften 89, 84–88 (2002).

    Article  Google Scholar 

  72. A. J. Simpson, M. J. Simpson, E. Smith, and B. P. Kelleher, “Microbially Derived Inputs To Soil Organic Matter: Are Current Estimates Too Low?,” Environ. Sci. Technol. 41, 8070–8076 (2007).

    Article  Google Scholar 

  73. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A History of Research on the Link Between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics,” Soil Tillage Res. 79, 7–31 (2004).

    Article  Google Scholar 

  74. D. Šmejkalov, “Aggregation and Disaggregation of Humic Supramolecular Assemblies by NMR Diffusion Ordered Spectroscopy (DOSYNMR),” Environ. Sci. Technol. 42, 699–706 (2008).

    Article  Google Scholar 

  75. R. J. Smernik and J. A. Baldock, “Does Solid-State 15N NMR Spectroscopy Detect All Soil Organic Nitrogen?,” Biogeochemistry 75, 507–528 (2005).

    Article  Google Scholar 

  76. P. Sollins, P. Homann, and B. A. Caldwell, “Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls,” Geoderma 74(1–2), 65–105 (1996).

    Article  Google Scholar 

  77. P. Sollins, C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. A. Caldwell, K. Lajtha, R. Bowden, “Organic C and N Stabilization in a Forest Soil: Evidence from Sequential Density Fractionation,” Soil Biol. Biochem. 38, 3313–3324 (2006).

    Article  Google Scholar 

  78. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions (John Wiley & Sons, New York, 1994).

    Google Scholar 

  79. R. Sutton and G. Sposito, “Molecular Structure in Soil Humic Substances: the New View,” Environ. Sci. Technol. 39, 9009–9015 (2005).

    Article  Google Scholar 

  80. R. S. Swift, “Molecular Weight, Size, Shape, and Charge Characteristics of Humic Substances: Some Basic Considerations,” in Humic Substances. II. In Search of Structure, Ed. by M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift (John Wiley & Sons, New York, 1989).

    Google Scholar 

  81. J. E. Tomaszewski, R. P. Schwarzenbach, and M. Sander, “Protein Encapsulation by Humic Substances,” Environ. Sci. Technol. 45, 6003–6010 (2011).

    Article  Google Scholar 

  82. M. Von Lützow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM Fractionation Methods: Relevance to Functional Pools and to Stabilization Mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  83. M. Von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions — A Review,” Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  84. M. Von Lützow, I. Kögel-Knabner, B. Ludwig, E. Matzner, H. Flessa, K. Ekschmitt, G. Guggenberger, B. Marschner, and K. Kalbitz, “Stabilization Mechanisms of Organic Matter in Four Temperate Soils: Development and Application of a Conceptual Model,” J. Plant Nutr. Soil Sci. 171, 111–124 (2008).

    Article  Google Scholar 

  85. R. L. Wershaw, “Evaluation of Conceptual Models of Natural Organic Matter (Humus) from a Consideration of the Chemical and Biochemical Processes of Humification,” Scientific Investigations Report, 2004-5121.

  86. R. L. Wershaw, “Molecular Aggregation of Humic Substances,” Soil Sci. 164, 803–813 (1999).

    Article  Google Scholar 

  87. J. Wu and P. C. Brookes, “The Proportional Mineralisation of Microbial Biomass and Organic Matter Caused by Air-Drying and Rewetting of a Grassland Soil,” Soil Biol. Biochem. 37, 507–515 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Semenov.

Additional information

Original Russian Text © V.M. Semenov, A.S. Tulina, N.A. Semenova, L.A. Ivannikova, 2013, published in Pochvovedenie, 2013, No. 4, pp. 393–407.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semenov, V.M., Tulina, A.S., Semenova, N.A. et al. Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Eurasian Soil Sc. 46, 355–368 (2013). https://doi.org/10.1134/S106422931304011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931304011X

Keywords

  • humic substances
  • polymeric and supramolecular models