Skip to main content

Changes in the humus status and the structure of the microbial biomass in hydrogen exhalation places

Abstract

The exhalation of hydrogen out of the earth’s deep sediments in the areas usually confined to tectonic fractures has been investigated. In places of hydrogen exhalation, ring-shaped structures of subsidence are formed. They are well identified on satellite images. The concentrations of molecular hydrogen measured in the field exceed to a great extent its probable production in soils. The soils influenced by two factors—a flux of molecular hydrogen and temporary waterlogging—are shown to degrade rapidly. The humus content decreases by 2–3 times; the optical density of the humic acids drops significantly; and the humus distribution, according to the morphological features, points to its high mobility. On the whole, hydrogen emissions inhibit the microbial activity resulting in a drastic decrease of the total microbial biomass and a greater contribution of bacteria to its structure. In a model experiment with hydrogen passing through a soil column, the bleaching of the soil by 2% and some reduction in the optical density of the humic acids were recorded.

This is a preview of subscription content, access via your institution.

References

  1. A. B. Akhtyrtsev and E. M. Samoilova, “The Influence of Hydromorphism on the Distribution, Accumulation, and Composition of Humus in Forest-Steppe Soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 3–10 (1983).

  2. O. S. Bezuglova and O. G. Nazarenko, “Genesis and Properties of Mocharic Soils of the Ciscaucasus,” Eur. Soil Sci. 31(12), 1293–1300 (1998).

    Google Scholar 

  3. N. P. Bel’chikova, “Some Regularities in the Contents and Composition of Humus and Properties of Humic Acids in the Major Group of Soils of the Soviet Union,” Tr. Pochv. Inst. im. V.V. Dokuchaeva, 38, 33–58 (1951).

    Google Scholar 

  4. N. P. Betelev, “On the Presence of Hydrogen in Natural Gas in the Southeast of the Ustyurt Plateau,” Dokl. Akad. Nauk SSSR 161(6), 1422–1426 (1965).

    Google Scholar 

  5. L. A. Grishina, Humus Formation and Humus State of Soils (Moscow, 1986) [in Russian].

  6. A. R. Dzhindil, “On the Impact of Irrigation on the Composition and Content of Humus in Southern Chernozems of Odessa Oblast,” Agrokhimiya, 106–109 (1974).

  7. L. M. Dmitrakov and E. M. Samoilova, “Humus of Meadow Soils in the Forest-Steppe Zone,” Pochvovedenie, No. 9, 56–62 (1973).

  8. M. K. D’yakova and A. V. Lozovoi, Hydrogenization of Fuels in the Soviet Union (Izd. Akad. Nauk SSSR, Moscow, 1940) [in Russian].

    Google Scholar 

  9. G. A. Zavarzin, Bacteria and Composition of the Atmosphere (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  10. G. A. Zavarzin, Hydrogen Bacteria and Carboxy Bacteira (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  11. F. R. Zaidel’man, “Genetic Features and Morphology of Chernozemlije Podzolized Gleyed Soils of the Northern Forest-Steppe Zone,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 3–8 (2005).

  12. F. R. Zaidel’man, Theory of the Development of Bleached Acid Eluvial Horizons and Its Applied Aspects (Izd. KRASAND, Moscow, 2009) [in Russian].

    Google Scholar 

  13. F. R. Zaidel’man, M. V. Bannikov, and A. P. Shvarov, “Iron-Rich Laminae in Coarse-Textured Soils of Polesie Landscapes with Different Degrees of Hydromorphism,” Pochvovedenie, No. 10, 19–29 (1994).

  14. F. R. Zaidel’man and G. A. Danilova, “The Impact of Hydromorphism on the Composition of Humus in the Virgin and Cultivated Soddy-Podzolic Soils on Heavy Mantle Loams,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 4, 52–57 (1989).

  15. F. R. Zaidel’man and A. K. Ogleznev, “Study of Gleyzation Process in Floodplain Soils of the Nonchernozemic Zone,” Pochvovedenie, No. 1, 44–52 (1963).

  16. A. S. Zinger, “Molecular Hydrogen in Gas Dissolved in Water of Oil Deposits in the Loweer Volga Region,” Geokhimiya, No. 10, 890–898 (1962).

  17. V. I. Kanivets, “Interaction of Hydrogen, Methane, and Hydrogen Sulfide with the Mineral Part of Soils,” Pochvovedenie, No. 5, 52–59 (1970).

  18. V. G. Kasatkin, “On the Forms of Humus Matter in Swampy Podzolic Soils,” Nauch. Tr. Ivanovsk. Sel’skokhoz. Inst., No. 9 (1948).

  19. S. V. Kasparov, O. I. Min’ko, and Ya. M. Ammosova, “The Emission of Hydrogen and Carbon Dioxide upon Soil Inundation,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 4, 23–27 (1986).

  20. S. V. Kasparov and N. S. Panikov, “Methodological Aspects of Studying Gas Exchange in the Soil-Atmosphere System,” in Interaction of Soil and Atmosheric Air (Izd. Mosk. Gos. Univ., Moscow, 1985), pp. 47–62 [in Russian].

    Google Scholar 

  21. I. S. Kaurichev and D. S. Orlov, Oxidation-Reduction Processes and Their Role in the Genesis and Fertility of Soils (Kolos, Moscow, 1982)m [in Russian].

    Google Scholar 

  22. E. N. Kondrat’eva, Autotrophic Prokaryotes (Izd. Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  23. M. M. Kononova, Organicheskoe veshchestvo pochvy (Izd. AN SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  24. A. I. Krivtsov, G. I. Voitov, A. I. Fridman, et al., “On the Content of Hydrogen in Free Flows in the Khibiny Region,” Dokl. Akad. Nauk SSSR 178(5), 1190–1192 (1967).

    Google Scholar 

  25. V. N. Larin, Our Earth (Agar, Moscow, 2005) [in Russian].

    Google Scholar 

  26. A. S. Maloletnev and M. Ya. Shpirt, “Current State of Technology to Obtain Liquid Fuels from Coal,” Zh. Ross. Khim. O-va im. D.I. Mendeleeva, 52(6), 44–52 (2008).

    Google Scholar 

  27. O. I. Min’ko, “Planetary Gas Function of the Soil Cover,” Pochvovedenie, No. 7, 59–75 (1988).

  28. O. I. Min’ko, S. V. Kasparov, and Ya. M. Amosova, “Gaseous Substances: Products of Metabolism of Microbial Cenoses in Waterlogged Soils,” Zh. Obshch. Biol. 16, 182–193 (1987).

    Google Scholar 

  29. O. I. Min’ko and L. A. Farmakovskii, “Intensity of Hydrogen and Methane Generation in a Soil in Dependence on the Soil Water Content,” Pochvovedenie, No. 5, 139–144 (1992).

  30. D. S. Orlov, Soil Humus Acids and a General Theory of Humification (Izd. Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  31. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  32. D. S. Orlov and O. N. Biryukova, “Quantitative Regularities of Light Reflection by Soils. XV. The Impact of the Qualitative Composition of the Soil Humus,” Biol. Nauki, 95–100 (1989).

  33. D. S. Orlov, V. L. Dubina, and V. A. Elkina, “Pyrolysis and Differntial Thermal Analysis of Soil Humic Sub-stances,” Agrokhimiya, No. 1, 12–23 (1968).

  34. D. S. Orlov, N. I. Sukhanova, and M. S. Rozanova, Spectral Reflectance of Soils and Their Components (Izd. Mosk. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  35. A. I. Popov, Humic Substances. Properties, Structure, Formation (Izd. Sankt-Peterb. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  36. S. V. Ryzhikov, V. M. Strelkov, N. A. Vedernikov, and Yu. P. Gailitis, “Fractional Composition of the Products of Mechanical and Chemical Destruction of Humic Acids from Peat,” Nauch. Dokl. Vyssh. Shk., Biol. Nauki, No. 10 (334), 51–62 (1991).

  37. E. M. Samoilova, Meadow Soils of the Forest-Steppe (Izd. Mosk. Univ., Moscow, 1981).

    Google Scholar 

  38. V. L. Syvorotkin, Deep Degassing of the Earth and Global Catastrophes (Geoinformtsentr, Moscow, 2002) [in Russian].

    Google Scholar 

  39. V. L. Syvorotkin, “Ozone Anomalies above Voronezh—Indicators of Deep Degassing Processes.” Lithology and Mineral Resources of Central Russia, Workshop Materials, pp. 81–82 (2000).

  40. R. L. Tate, Soil Organic Matter: Biological and Ecological Effects (Wiley, Chichester, 1987).

    Google Scholar 

  41. I. S. Urusevskaya and L. S. Shchipikhina, “The Content and Composition of Humus in Soils of Different Gleyzation Degrees in the Soddy-Podzolic Soil Zone,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, No. 10, 127–133 (1978).

  42. A. D. Fokin, “The Inclusion of Organic Substances and Products of Their Transforation into Soil Humus,” Izv. Timiryaz. Sel’skokhoz. Akad, No. 6 (1974).

  43. A. V. Shcherbakov and N. D. Kozlova, “Hydrogen Anomalies in Underground Fluids of Deep Fault Zones,” Geotektonika, No. 2, 56–66 (1988).

  44. E. E. Angino, E. J. Zeller, G. A. M. Dreschhoff, E. D. Goebel, and R. M. Coveney Jr., “Spatial Distribution of Hydrogen in Soil Gas in Central Kansas, USA,” in Geochemistry of Gaseous Elements and Compounds (Theophrastus Publications, USA, 1990).

    Google Scholar 

  45. J.-L. Charlou, J. P. Donval, C. Konn. D. Birot, S. Sudarikov, P. Jean, and H. Ondreas, “High Flux of Hydrogen, Abiogenic Methane, and Heavier Hydrocarbons from the Slow-Spreading Mid-Atlantic,” Geophys. Res. Abstr., 10, 4–5 (2010).

    Google Scholar 

  46. P. Hernandez, N. Pere, J. Salazar, M. Sato, K. Notsu, and H. Wakita, “Soil Gas CO2, CH4, and H2 Distribution in and around Las Canadas Caldera, Tenerife, Canary Islands, Spain,” J. of Volcanol., 103(1–4), pp. 425–438.

  47. C. Neal and G. Stanger, Hydrogen Generation from Mantle Source Rocks in Oman, (Earth Planet. Sci. Lett., 66, 315–320 (1983).

    Google Scholar 

  48. R. H. Ware, C. Roeken, and M. Wyss, “The Detection and Interpretation of Hydrogen in Fault Gases,” Pure Appl. Geophys. 122(2–4), 392–402 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Sukhanova, S.Ya. Trofimov, L.M. Polyanskaya, N.V. Larin, V.N. Larin, 2013, published in Pochvovedenie, 2013, No. 2, pp. 152–162.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sukhanova, N.I., Trofimov, S.Y., Polyanskaya, L.M. et al. Changes in the humus status and the structure of the microbial biomass in hydrogen exhalation places. Eurasian Soil Sc. 46, 135–144 (2013). https://doi.org/10.1134/S1064229313020142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313020142

Keywords

  • Hydrogen
  • degradation
  • soil humus content