Skip to main content

Geostatistical analysis of the spatial variation of the ash reserves in the litter of bog birch forests in Western Siberia


A typological series of native Betula pubescens Ehrh. dendrocenoses along the channel of a river crossing a bog was studied. The variability of the mineral element reserves is described by geostatistical methods as the sum of a trend, autocorrelation, and random components. The contribution of deterministic and random components has been assessed in the years with average precipitation and in the year of 2007 with high and long-term flooding. The empirical variograms and the parameters of the model variograms are presented. The class of the spatial correlation of the ash reserves is described. A primary cause of the ash content’s variability is the specific water regime, which is determined by the following: (i) the abundance and duration of the spring floods responsible for the silt mass brought by the river and (ii) the draining effect of the intrabog river, the distance from which provided the formation in the forest of the ground cover with the specific species composition and ash content. The falloff of the arboreal layer in the bog birch forests formed the fundamental mineral background of the litter.

This is a preview of subscription content, access via your institution.


  1. 1.

    Yu. N. Blagoveshchenskii, L. G. Bogatyrev, E. A. Solomatova, and V. P. Samsonova, “Spatial Variation of the Litter Thickness in the Forests of Karelia,” Eur. Soil Sci. 939(9), 925–930 (2006).

    Article  Google Scholar 

  2. 2.

    L. G. Bogatyrev, “On the Classification of Forest Litters,” Pochvovedenie, No. 3, 118–127 (1990).

  3. 3.

    S. E. Vomperskii, Biological Foundations of Drainage Efficiency (Nauka, Moscow, 1968).

    Google Scholar 

  4. 4.

    P. Ya. Grabarnik, “Analysis of the Horizontal Structure of a Forest Stand: Model Approach,” Lesovedenie, No. 2, 77–85 (2010).

  5. 5.

    V. V. Dem’yanov, M. F. Kanevskii, E. A. Savel’eva, and S. Yu. Chernov, “Variography: Studying and Modeling of Spatially Correlated Structures,” in Problems of the Environment and Natural Resources: A Review (VINITI, Moscow, 1999), No. 11, pp. 33–54 [in Russian].

    Google Scholar 

  6. 6.

    R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren (Eds.), Data Analysis in Community and Landscape Ecology (RASKhN, Moscow, 1999) [in Russian].

    Google Scholar 

  7. 7.

    S. P. Efremov and T. T. Efremova, “The Impact of Drainage on the Contents of Tree and Herb Roots in Peat Soils,” in Multiple Assessment of Bogs and Boggy Forests in Relation to Their Reclamation (Nauka, Novosibirsk, 1973), pp. 113–128 [in Russian].

    Google Scholar 

  8. 8.

    S. P. Efremov, T. T. Efremova, and V. Bloiten, “Biological Productivity and Carbon Pool of the Phytomass of Forest Mires in Western Siberia,” Sib. Ekologich. Zh., No. 1, 29–44 (2005).

  9. 9.

    T. T. Efremova, S. P. Efremov, and A. F. Avrova, “Morphology and the Spatial-Temporal Variability of Litters in Boggy Birch Stands of Western Siberia,” Vestn. Tomsk. Gos. Univ., Ser. Biolog., 6(2), 84–95 (2009).

    Google Scholar 

  10. 10.

    T. T. Efremova, S. P. Efremov, and A. F. Avrova, “Correlation between the Morphogenetic Types of Litter and Their Properties in Bog Birch Forests,” Eur. Soil Sci. 43(8), 858–866 (2010).

    Article  Google Scholar 

  11. 11.

    T. T. Efremova, S. P. Efremov, A. F. Avrova, and N. V. Melent’eva, “Mineral Component of Litters in Boggy Birch Forests: Conditions of Accumulation and Relationship with the Stand Productivity,” Zh. Sib. Feder. Univ. 3(2), 211–223 (2010).

    Google Scholar 

  12. 12.

    L. O. Karpachevskii, Forest and Forest Soils (Lesn. Promyshl., Moscow, 1981) [in Russian].

    Google Scholar 

  13. 13.

    I. F. Kuzyakova, V. A. Romanenkov, and Ya. V. Kuzyakov, “Application of Geostatistics in Processing the Results of Soil and Agrochemical Studies,” Eur. Soil Sci. 34(11), 1219–1228 (2001).

    Google Scholar 

  14. 14.

    A. P. Sapozhnikov, “Forest Litter: Nomenclature, Classification, and Indexation,” Pochvovedenie, No. 5, 96–105 (1984).

  15. 15.

    O. P. Sekretenko, T. T. Efremova, and A. F. Avrova, “Geostatistical Analysis of Litter Distribution in Boggy Birch Forests of Western Siberia,” in Mathematical Modeling in Ecology (Materials of the National Conf.) (Pushchino, 2009), pp. 256–257 [in Russian].

  16. 16.

    V. A. Sidorova, “Bibliography 1939–2006,” in Geostatistics and Soil Geography (Nauka, Moscow, 2007), pp. 134–173 [in Russian].

    Google Scholar 

  17. 17.

    E. A. Solomatova, P. V. Krasil’nikov, and V. A. Sidorova, “Composition and Spatial Variability of Forest Litter in the Spruce Forest with Blackberry-Green Moss Cover, Middle Karelia,” Eur. Soil Sci. 32(6), 692–700 (1999).

    Google Scholar 

  18. 18.

    E. A. Solomatova and V. A. Sidorova, “Spatial Variability of Forest Litters in Blueberry Spruce Stands of Eastern Fennoscandia,” in Geostatistics and Soil Geography (Nauka, Moscow, 2007), pp. 87–91 [in Russian].

    Google Scholar 

  19. 19.

    E. V. Shein and T. A. Arkhangel’skaya, “Pedotransfer Functions: State of the Art, Problems, and Outlooks,” Eur. Soil Sci. 39(10), 1089–1099 (2006).

    Article  Google Scholar 

  20. 20.

    C. Cambardella, T. B. Moorman, J. M. Novak, et al., “Field-Scale Variability of Soil Properties in Central Iowa Soils,” Soil Sci. Soc. Am. J. 58, 1501–1511 (1994).

    Article  Google Scholar 

  21. 21.

    N. Cressie, Statistics for Spatial Data (John Wiley and Sons, Inc, New York, 1993).

    Google Scholar 

  22. 22.

    P. Goovaerts, “Geostatistical Software,” in Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications (Springer, New York, 2010), pp. 125–134.

    Chapter  Google Scholar 

  23. 23.

    P. J. Diggle and Jr. P. J. Ribeiro, Model-Based Geostatistics (Springer, New York, 2007).

    Google Scholar 

  24. 24.

    J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (J. Wiley & Sons, Chichester, 2008).

    Google Scholar 

  25. 25.

    R. Kerry and M. A. Oliver, “Comparing Sampling Needs for Variograms of Soil Properties Computed by the Method of Moments and Residual Maximum Likelihood,” Geoderma 140, 383–396 (2007).

    Article  Google Scholar 

  26. 26.

    E. J. Pebesma, “How We Build Geostatistical Models and Deal with Their Output,” in Interfacing Geostatistics and GIS (Springer, Berlin, 2009), pp. 3–15.

    Chapter  Google Scholar 

  27. 27.

    M. J. Pringle, T. F. A. Bishop, R. M. Lark, B. M. Whelan, and A. B. McBratney, “The Analysis of Spatial Experiments,” in Geostatistical Applications for Precision Agriculture (Springer, London, 2010), pp. 243–267.

    Chapter  Google Scholar 

  28. 28.

    Development Core Team, R: A Language and Environment for Statistical Computing. Version 2.11.0 (Vienna, Austria, 2010) [].

  29. 29.

    Jr. P. J. Ribeiro and P. J. Diggle, “GeoR: A Package for Geostatistical Analysis,” R-NEWS 1(2), 15–18 (2001).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. T. Efremova.

Additional information

Original Russian Text © T.T. Efremova, O.P. Sekretenko, A.F. Avrova, S.P. Efremov, 2013, published in Pochvovedenie, 2013, No. 1, pp. 56–66.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Efremova, T.T., Sekretenko, O.P., Avrova, A.F. et al. Geostatistical analysis of the spatial variation of the ash reserves in the litter of bog birch forests in Western Siberia. Eurasian Soil Sc. 46, 51–60 (2013).

Download citation


  • variograms
  • typological series
  • water regime
  • litter