Eurasian Soil Science

, Volume 45, Issue 5, pp 521–531 | Cite as

Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution

  • A. V. BogorodskayaEmail author
  • T. V. Ponomareva
  • O. A. Shapchenkova
  • A. S. Shishikin
Soil Biology


The quantitative and functional responses of soil microbial cenoses in the forest-tundra zone to pollution have been studied in the area exposed to emissions from the Norilsk Mining and Metallurgical Works. The strongest structural and functional disturbances of the soil biota have been recorded on the plots with completely destroyed vegetation. A decrease in the content of microbial carbon and an elevated respiration rate in the technogenically transformed soils provide evidence for the functioning of the microbial communities under stress caused by the continuous input of aggressive pollutants. The degree of transformation and the contents of technogenic elements (Ni, Cu, Co, Pb, and S) in the organic horizons of the forest-tundra soils are the major factors affecting the development and functioning of the soil microbial cenoses.


EURASIAN Soil Science Organic Horizon Mineral Horizon Forest Tundra Basal Soil Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Anan’eva, Microbiological Aspects of the Self-Purification and Resilience of Soils (Nauka, Moscow, 2003) [in Russian].Google Scholar
  2. 2.
    E. V. Arinushkina, Manual on the Chemical Analyses of Soils (Izd. Mosk. Gos. Univ., Moscow, 1970) [in Russian].Google Scholar
  3. 3.
    E. V. Blagodatskaya, T. V. Pampura, I. N. Bogomolova, G. N. Koptsik, and N. V. Lukina, “The Impact of Emissions from the Copper-Aluminum Smelter on the Soil Microbial Communities in Forest Biogeocenoses of the Kola Peninsula,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 2, 232–242 (2008).Google Scholar
  4. 4.
    V. D. Vasil’evskaya, Soil Formation in Tundras of Central Siberia (Nauka, Moscow, 1980) [in Russian].Google Scholar
  5. 5.
    GOST (State Standard) 26213-91, Soils. Methods of Determination of the Organic Matter Content [in Russian].Google Scholar
  6. 6.
    Report on the State of the Environment and Environmental Protection in the Krasnoyarsk Region in 2009 (Krasnoyarsk, 2010) [in Russian].Google Scholar
  7. 7.
    V. N. Grishko, “Microbial Cenosis in Soils Polluted by Fluorine-containing Acidic Industrial Emissions,” Mikrobiologiya 67(3), 346–350.Google Scholar
  8. 8.
    G. A. Evdokimova, “Microbiological Activity of Soils Contaminated with Heavy Metals,” Pochvovedenie, No. 6, 125–132 (1982).Google Scholar
  9. 9.
    G. A. Evdokimova and I. V. Zenkova, “Effects of Aluminum Plant Emissions on Soil Biota in the Kola Peninsula,” Eur. Soil Sci. 36(8), 872–877 (2003).Google Scholar
  10. 10.
    G. A. Evdokimova, E. E. Kislykh, and N. P. Mozgova, Biological Activity of Soils under Conditions of Aerial Pollution in the Extreme North (Nauka, Leningrad, 1984) [in Russian].Google Scholar
  11. 11.
    G. A. Evdokimova and N. P. Mozgova, “The Impact of Emissions from the Nonferrous Metallurgical Plant on Soil in a Model Experiment,” Eur. Soil Sci. 33(5), 552–559 (2000).Google Scholar
  12. 12.
    G. A. Evdokimova and N. P. Mozgova, Microorganisms in Tundra and Forest Podzols of the Kola North (Izd. KNTs RAN, Apatity, 2001) [in Russian].Google Scholar
  13. 13.
    Yu. I. Ershov, “Soils of Subtundra Woodland in the Lower Reaches of the Yenisei River Subjected to Aerial Pollution with Sulfur,” Geogr. Prir. Resur., No. 1, 33–39 (1992).Google Scholar
  14. 14.
    Yu. I. Ershov, Soils of the Central Siberian Plateau (Inst. lesa im. V.N. Sukacheva, Krasnoyarsk, 2004) [in Russian].Google Scholar
  15. 15.
    L. M. Zagural’skaya and S. S. Zyabchenko, “The Impact of Industrial Emissions on the Microbiological Processes in Soils of Boreal Forests in Kostomuksha Area,” Pochvovedenie, No. 5, 105–110 (1994).Google Scholar
  16. 16.
    A. P. Ivshin, Extended Abstract of Candidate’s Dissertation in Biology (Yekaterinburg, 1993).Google Scholar
  17. 17.
    G. M. Kashulina, V. N. Pereverzev, and T. I. Litvinova, “Transformation of the Soil Organic Matter under the Extreme Pollution by Emissions of the Severonikel Smelter,” Eur. Soil Sci. 43(10), 1174–1183.Google Scholar
  18. 18.
    Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  19. 19.
    S. I. Kolesnikov, K. Sh. Kazeev, and V. F. Val’kov, Ecological State and Functions of Soils under Conditions of Chemical Pollution (Rostizdat, Rostov-on-Don, 2006) [in Russian].Google Scholar
  20. 20.
    I. A. Korotkov, “Forest-Growing Regionalization of Subtundra Forests in Siberia,” in Ecological and Geographic Problems of Preservation and Restoration of Siberian Forests (Abstracts of Reports at the All-Russia Sci. Conf.) (Arkhangel’sk, 1991), pp. 303–307 [in Russian].Google Scholar
  21. 21.
    V. V. Kryuchkov, “Maximum Permissible Anthropogenic Loads and the State of Northern Ecosystems,” Ekologiya, No. 3, 28–40 (1991).Google Scholar
  22. 22.
    O. S. Kukharenko, T. G. Dobrovol’skaya, A. V. Golovchenko, A. L. Stepanov, G. V. Matyshak, “The Structure of the Bacterial Heterotrophic Block in Tundra Soils of the Yamal Peninsula,” Eur. Soil Sci. 42(4), 426–431 (2009).CrossRefGoogle Scholar
  23. 23.
    S. V. Levin, V. S. Guzev, I. V. Aseeva, I. P. Bab’eva, O. E. Marfenina, M. M. Umarov, “Heavy Metals as a Factor of Anthropogenic Impacts on the Soil Micro-biota,” in Microorganisms and Soil Conservation (Izd. Mosk. Gos. Univ., Moscow, 1989), pp. 5–46 [in Russian].Google Scholar
  24. 24.
    L. V. Lysak and T. G. Dobrovol’skaya, “Bacteria in Tundra Soils of Western Taimyr,” Pochvovedenie, No. 9, 74–77 (1982).Google Scholar
  25. 25.
    Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Izd. Mosk. Gos. Univ., Moscow, 1991) [in Russian].Google Scholar
  26. 26.
    Methods of Stationary Soil Studies (Nauka, Moscow, 1977), [in Russian].Google Scholar
  27. 27.
    Z. I. Nikitina and G. P. Golodyaev, Ecology of Microorganisms and Soil Sanitation in Technogenic Areas (Dal’nauka, Vladivostok, 2003) [in Russian].Google Scholar
  28. 28.
    O. M. Parinkina, “Soil Microflora in the Arctic Tundra Subzone of Taimyr,” Pochvovedenie, No. 9, 61–69 (1984).Google Scholar
  29. 29.
    O. M. Parinkina, Microflora of Tundra Soils (Nauka, Leningrad, 1989) [in Russian].Google Scholar
  30. 30.
    L. M. Polyanskaya, V. V. Nikonov, and N. V. Lukina, “Microorganisms of Al-Fe-humus Podzols under Lichen Pine Forests Affected by Aerotechnogenic Pollution,” Eur. Soil Sci. 34(2), 190–200 (2001).Google Scholar
  31. 31.
    V. A. Savchenko, Ecological Problems of the Taimyr Peninsula (SIP RIA, Moscow, 1998) [in Russian].Google Scholar
  32. 32.
    N. D. Sorokin and S. Yu. Evgrafova, “Biological Activity of Forest Cryogenic Soils in Central Evenkia,” Eur. Soil Sci. 32(5), 578–582 (1999).Google Scholar
  33. 33.
    N. D. Sorokin, S. Yu. Evgrafova, I. D. Grodnitskaya, and A. V. Bogorodskaya, “Ecological Specificity of the Development of Microflora in Cryogenic Forest Soils in the North of Central Siberia,” Sib. Ekologich. Zh. No. 6, 859–865 (2008).Google Scholar
  34. 34.
    E. Z. Tepper, V. K. Shil’nikova, and G. I. Pereverzeva, Practicum on Microbiology for the Institutes of Higher Education (Drofa, Moscow, 2004) [in Russian].Google Scholar
  35. 35.
    M. R. Fedorishchak, “Anthropogenic Transformation of Soils in the Impact Zone of Metallurgical Works,” Pochvovedenie, No. 11, 36–40 (1978).Google Scholar
  36. 36.
    V. I. Kharuk, K. Winterberger, G. M. Tsibul’skii, et al., “Technogenic Disturbances of Subtundra Forests in the Noril’sk Valley,” Ekologiya, No. 6, 424–429 (1996).Google Scholar
  37. 37.
    I. V. Tsvetkov, Extended Abstract of Candidate’s Dissertation in Agriculture (Arkhangel’sk, 2001).Google Scholar
  38. 38.
    T. L. Chikhacheva, “Natural Regeneration in Subtundra Forests of the Krasnoyarsk Region under Conditions of the Aerotechnogenic Pollution,” Lesovedenie, No. 2, 70–77 (2011).Google Scholar
  39. 39.
    A. S. Shishikin, T. A. Burenina, Yu. I. Ershov, et al., “Natural Conditions of the Noril’sk Depression,” in Ecological Problems of Northern Regions and the Ways of Their Solution (Materials All-Russia Conf.), (Izd. KNTs Ross. Akad. Nauk, Apatity, 2008), Part 1, pp. 175–179 [in Russian].Google Scholar
  40. 40.
    M. B. Aceves, C. G. J. Ansorena, L. Dendooven, and P. C. Brookes, “Soil Microbial Biomass and Organic C in a Gradient of Zinc Concentrations in Soils around a Mine Spoil Tip,” Soil Biol. Biochem. 31, 867–876 (1999).CrossRefGoogle Scholar
  41. 41.
    T.-H. Anderson, K. H. Domsh, “A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soil,” Soil Biol. Biochem. 10, 215–221 (1978).CrossRefGoogle Scholar
  42. 42.
    P. C. Brookes, “The Use of Microbial Parameters in Monitoring Soil Pollution by Heavy Metals,” Biol. Fertil. Soils 19, 269–279 (1995).CrossRefGoogle Scholar
  43. 43.
    M. Friedlova, “The Influence of Heavy Metals on Soil Biological and Chemical Properties,” Soil Water Res. 5, 21–27 (2010).Google Scholar
  44. 44.
    S. K. Gupta, “Mobilizable Metal in Anthropogenic Contaminated Soils and Its Ecological Significance,” in Impact of Heavy Metals on the Environment, Ed. by J. P. Vernet, 299–310 (1992).Google Scholar
  45. 45.
    A. A. Hansen, R. A. Herbert, K. Mikkelsen, et al., “Viability, Diversity and Composition of the Bacterial Community in a High Arctic Permafrost Soil from Spitsbergen, Northern Norway,” Environ. Microbiol. 9, 2870–2884 (2007).CrossRefGoogle Scholar
  46. 46.
    H. Insam, T. C. Hutchinson, and H. H. Reber, “Effect of Heavy Metal Stress on the Metabolic Quotient of Soil Microflora,” Soil Biol. Biochem. 28(4–5), 691–694 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Bogorodskaya
    • 1
    Email author
  • T. V. Ponomareva
    • 1
  • O. A. Shapchenkova
    • 1
  • A. S. Shishikin
    • 1
  1. 1.Sukachev Institute of Forestry, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations