Skip to main content
Log in

Simulation of water permeability processes in chernozems of the Kamennaya Steppe

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The physical and hydrophysical properties of ordinary chernozems from the Kamennaya Steppe were studied for the experimental support of a soil water infiltration model. Increased fissuring and density of the plow horizon were noted because of the dry weather conditions, which caused high infiltration values. The soil water retention curve parameters were calculated from the experimentally determined particle-size distribution, the bulk density of the soil, the solid phase density, the organic matter content, and the physicomechanical and soil-hydrological constants using the known pedotransfer functions and the Voronin secant method. A model experiment with different input parameters was performed. It was shown that the best experimental support of the model included parameters calculated by the Voronin method with the following approximation by the van Genuchten function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Aderikhin, I. I. Kovalev, L. N. Kul’chitskaya, and A. N. Stepanishcheva, Soils of Experimental Fields of the Dokuchaev Institute of Farming in Talovskii District of Voronezh Oblast and Recommendations on Their Use. Explanatory Note and Soil Map on a Scale of 1: 10000) (Izd. Voronezh. Gos. Univ., Voronezh, 1984) [in Russian].

    Google Scholar 

  2. N. I. Bazilevich, O. S. Grebenshchikova, and A. A. Tishkov, Geographic Regularities of the Structure and Functioning of Ecosystems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. Z. S. Bogatyreva, Candidate’s Dissertation in Biology (Voronezh, 1974).

  4. A. F. Vadyunina and Z. A. Korchagina, Methods for Determining the Physical Properties of Soils in the Field and Laboratory (Vyssh. shkola, Moscow, 1961) [in Russian].

    Google Scholar 

  5. L. A. Vorob’eva, Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  6. A. D. Voronin, The Structural-Functional Hydrophysics of Soils (Izd. Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  7. G. N. Vysotskii, Selected Works (Pochv. Inst. im. V.V. Dokuchaeva Rossel’khozakademii, Moscow, 2009) [in Russian].

    Google Scholar 

  8. A. M. Globus, Soil-Geographic Substantiation of Agroecological Mathematical Models (Gidrometeoizdat, Leningrad, 1987) [in Moscow].

    Google Scholar 

  9. A. M. Globus, Experimental Hydrophysics of Soils (Leningrad, 1969) [in Russian].

  10. A. K. Guber and E. V. Shein, “Adaptation and Identification of Mathematical Models of Water Flow in Soil,” Pochvovedenie, No. 9, 1107–1119 (1997) [Eur. Soil Sci. 30 (9), 987–998 (1997)].

  11. F. R. Zaidel’man, Soil Reclamation (Izd. Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  12. Kamennaya Steppe: Problems of Studies of the Soil Cover (Pochv. inst. im. V.V. Dokuchaeva, Moscow, 2007) [in Russian].

  13. V. G. Karmanov, Mathematical Programming (FIZMATLIT, Moscow, 2004) [in Russian].

    Google Scholar 

  14. N. A. Kachinskii, Soil Physics. Water-Physical Properties and Regimes of Soils (Vyssh. shkola, Moscow, 1970) [in Russian].

    Google Scholar 

  15. V. A. Kovda (Ed.), Modeling Salinization and Solonetzic Processes in Soils (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  16. V. A. Korolev, Modern Physical Status of Chernozems in the Center of the Russian Plain (Izd. E.A. Bolkhovitinova, Voronezh, 2008) [in Russian].

    Google Scholar 

  17. S. V. Mamikhin, Dynamics of the Organic Carbon and Radionuclides in Terrestrial Ecosystems (Imitational Modeling and the Use of Information Technology (Izd. Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  18. A. I. Morozov and V. O. Targulian, “Ideal Model of the Development of Eluvial Horizon in Soils and Weathering Mantles,” Pochvovedenie, No. 7, 897–903 (1995).

  19. R. A. Poluektov, Modeling of Soil Processes in Agroecosystems (Izd. St.-Peterb. Gos. Univ., St. Petersburg, 2002) [in Russian].

    Google Scholar 

  20. A. A. Rode, Soil Moisture (Izd. Akad. Nauk SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  21. I. M. Ryzhova, Mathematical Modeling of Soil Processes (Izd. Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  22. E. V. Shein, A Course of Soil Physics (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  23. E. V. Shein and L. O. Karpachevskii (Eds.), Theory and Methods of Soil Physics (Grif i K, Moscow, 2007) [in Russian].

    Google Scholar 

  24. D. I. Shcheglov, Chernozems of the Center of the Russian Plain and Their Evolution under the Impact of Natural and Anthropogenic Factors (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  25. R. Eggel’smann, Manual on Drainage (Kolos, Moscow, 1984) [in Russian].

    Google Scholar 

  26. A. McBratney and B. Minasny, “Soil Inference Systems,” in Developments of Pedotransfer Functions in Soil Hydrology (Developments in Soil Science 30) (Elsevier, Amsterdam, 2004), pp. 323–348.

    Chapter  Google Scholar 

  27. A. Nemes and W. J. Rawls, “Soil Texture and Particle-Size Distribution as Input to Estimate Soil Hydraulic Properties,” in Developments of Pedotransfer Functions in Soil Hydrology (Developments in Soil Science 30) (Elsevier, Amsterdam, 2004), pp. 47–70.

    Chapter  Google Scholar 

  28. A. Nemes, J. H. M. Wosten, and A. Lilly, “Development of Soil Hydraulic Pedotransfer Functions on a European Scale: Their Usefulness in the Assessment of Soil Quality,” in Sustaining the Global Farm (Selected Papers from the 10th Int. Soil Conserv. Org, May 24–29, 1999, Purdue Univ. and the USDA-ARS National Soil Erosion Res. Lab., 2001), pp. 541–549.

  29. Ya. A. Pachepsky and W. J. Rawls (Eds.), Developments of Pedotransfer Functions in Soil Hydrology (Developments in Soil Science 30) (Elsevier, Amsterdam, 2004).

    Google Scholar 

  30. M. G. Schaap, F. L. Leij, and M. Th. Van Genuchten, “Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions,” J. Hydrol. 251, 163–176 (2001).

    Article  Google Scholar 

  31. E. V. Shein, A. K. Guber, and A. V. Dembovetsky, “Key Soil Water Contents,” in Developments of pedotransfer Functions in Soil Hydrology (Developments in Soil Science 30) (Elsevier, Amsterdam, 2004), pp. 241–249.

    Chapter  Google Scholar 

  32. J. Simunek, M. Sejna, and M. Th. Van Genuchten, The HYDRUS-2D Software Package for Simulating Two-Dimensional Movement f Water, Heat, and Multiple Solutes in Variable Saturated Media, Version 2.0. IGWMC-TPC-53 (Int. Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 1999).

    Google Scholar 

  33. M. Th. Van Genuchten, “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” SSSA J. 44, 892–898 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Shein, D.I. Shcheglov, V.V. Moskvin, 2012, published in Pochvovedenie, 2012, No. 6, pp. 648–657.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, E.V., Shcheglov, D.I. & Moskvin, V.V. Simulation of water permeability processes in chernozems of the Kamennaya Steppe. Eurasian Soil Sc. 45, 578–587 (2012). https://doi.org/10.1134/S1064229312040102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229312040102

Keywords

Navigation