Skip to main content
Log in

Characterization of the soil organic matter and plant tissues in an initial stage of the plant succession and soil development by means of curie-point pyrolysis coupled with GC-MS

  • Soil Evolution
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The composition of the soil organic matter in soil developing under the influence of vegetation during the primary succession in the poor sandy area was investigated. The Curie-point pyrolysis method coupled with gas chromatographic separation and mass spectrometric identification of pyrolysates was applied during the investigation. A comparison of occurrence and diversity in composition of organic compounds in plant tissues and humus horizon of soils under the communities of coniferous forest series in the initial stages and phases was carried out. A large diversity of organic compounds under Algae-Cyanophyta communities, biological soil crusts and Polytrichum piliferum was noticed. A clear differentiation in the composition of the soil organic matter at different phases of succession under predominating communities with cryptogamous and vascular plants was observed. The analysis of organic compounds in plant tissues was found to facilitate the determination of origin of various groups of organic compounds in the soil. The results obtained from the Curie point pyrograms in the humus horizon (A) under grasses (Corynephorus canescens, Koeleria glauca) differed from the pyrolysates obtained under Algae-Cyanophyta communities. The polysaccharide derivates are more frequent in the pyrolysis products under algae, grasses (Corynephorus canescens, Koeleria glauca) and mosses than under Pinus sylvestris. In the beginning of the terminal stage of succession, lignin, phenols and aliphatic substances, prevailed over the polysaccharide derivates in the humus horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Augris, J. Balesdent, A. Mariotti, et al., “Structure and Origin of Insoluble and Nonhydrolyzable Aliphatic Organic Matter in a Forest Soil,” Org. Geochem. 28, 119–124 (1998).

    Article  Google Scholar 

  2. R. Bednarek, H. Dziadowiec, U. Pokojska, and Z. Prusinkiewicz, Badania ekologiczno-gleboznawcze (PWN, Warszawa, 2004).

    Google Scholar 

  3. L. Beyer, “The Chemical Composition of Soil Organic Matter in Classical Humic Compounds and Bulk Samples: a Review,” Z. Pflanzenernaehr. Bodenk-d. 159, 527–539 (1996).

    Google Scholar 

  4. B. Chefetz, J. Tarchitzky, A. P. Deshmukh, et al., “Structural Characterization of Soil Organic Matter and Humic Acids in Particle-Size Fractions of an Agricultural Soil,” Soil Sci. Soc. Am. J. 66, 129–141 (2002).

    Article  Google Scholar 

  5. X. Y. Dai, C. L. Ping, and G. J. Michaelson, “Characterizing Soil Organic Matter in Arctic Tundra Soils by Different Analytical Approaches,” Org. Geochem. 33, 407–419 (2002).

    Article  Google Scholar 

  6. E. F. Dijkstra, J. J. Boon, and M. Van Mourik, “Analytical Pyrolysis of a Soil Profile under Scots Pine,” Eur. J. Soil Sci. 49, 295–304 (1998).

    Article  Google Scholar 

  7. FAO-UNESCO Soil Map of the World, Revised Legend, with Corrections and Updates, World Soil Resources Report No. 60 (FAO, Rome, 1988).

  8. P. G. Hatcher, K. J. Dria, S. Kim, and S. W. Frazier, “Modern Analytical Studies of Humic Substances,” Soil Sci. 166(11), 770–794 (2001).

    Article  Google Scholar 

  9. Y. Huang, G. Eglinton, E. R. E. Van Der Hage et al., “Dissolved Organic Matter and Its Parent Organic Matter in Grass Upland Soil Horizons Studies by Analytical Pyrolysis Techniques,” Eur. J. Soil Sci. 49, 1–15 (1998).

    Article  Google Scholar 

  10. J. Kączkowski, Biochemia Ros’lin, Metabolizm Wtórny Vol. 2. (PWN, Warsaw, 1993).

    Google Scholar 

  11. H. Knicker, S. Saggar, R. Bäumler, et al., “Soil Organic Matter Transformations Induced by Heracium pilosella L. (in Tussock Grassland in New Zealand),” Biol. Fertil. Soils 32, 194–201 (2000).

    Article  Google Scholar 

  12. I. Köugel, R. Hempfling, W. Zech, et al., “Chemical Composition of the Organic Matter in Forest Soils: 1. Forest Litter,” Soil Sci. 146(2), 124–136 (1988).

    Article  Google Scholar 

  13. I. Köugel-Knabner, “The Macromolecular Organic Composition of Plant and Microbial Residues as Inputs to Soil Organic Matter,” Soil Biol. Biochem. 34, 139–162 (2002).

    Article  Google Scholar 

  14. P. Leinweber and H. R. Schulten, “Advances in Analytical Pyrolysis of Soil Organic Matter,” J. Anal. Appl. Pyrol. 47, 165–189 (1998).

    Article  Google Scholar 

  15. J. Lewandowski and T. Zielin’ski, “Wiek i geneza osadów kopalnej doliny Białej Przemszy (Wy żyna Śląska),” Biuletyn PIG (1990).

  16. K. G. J. Nierop, “Origin of Aliphatic Compounds in a Forest Soil,” Org. Geochem. 29(4), 1009–1016 (1998).

    Article  Google Scholar 

  17. K. G. J. Nierop and P. Buurman, “Water-Soluble Organic Matter in Incipient Podzols: Accumulation in B Horizons or in Fibers,” Eur. J. Soil Sci. 50, 701–711 (1999).

    Article  Google Scholar 

  18. K. G. J. Nierop and P. Buurman, “Composition of Soil Organic Matter and Its Water-Soluble Fractions Uunder Young Vegetation on Drift Sand, Central Netherlands,” Eur. J. Soil Sci. 49 605–615 (1998).

    Article  Google Scholar 

  19. K. G. J. Nierop, B. Van Lagen, and P. Buurman, “Composition of Plant Tissues and Soil Organic Matter in the First Stages of Vegetation Succession,” Geoderma 100, 1–24 (2001).

    Article  Google Scholar 

  20. K. G. J. Nierop, “Temporal and Vertical Organic Matter Differentiation along a Vegetation Succession as Revealed by Pyrolysis and Thermally Assisted Hydrolysis and Methylation,” J. Anal. Appl. Pyrol. 61, 111–132 (2001).

    Article  Google Scholar 

  21. D. W. Page, A. J. Van Leeuwen, K. M. Spark, and D. E. Mulcahy, “Pyrolysis Characterization of Plant, Humus, and Soil Extract from Australian Catchments,” J. Anal. Appl. Pyrol. 65, 269–285 (2002).

    Article  Google Scholar 

  22. A. D. Pouwels and J. J. Boon, Analysis of Beech Wood Samples, Its Milled Wood Lignin and Polysaccharide Fractions by Curie-Point and Platinum Filament Pyrolysis-AAS Spectrometry,” J. Anal. Appl. Pyrol. 17, 97–126 (1990).

    Article  Google Scholar 

  23. Z. Prusinkiewicz, Środowisko i gleby w definicjach (Toruń, Oficyna Wydawnicza, Turpress, 1999).

    Google Scholar 

  24. O. Rahmonov, PhD Thesis (Uniwersytet Śląski, 1998).

  25. O. Rahmonov, Relations between Vegetation and Soil in Initial Phase of Succession in Sandy Areas in Poland (Uniwersytet Śląski, 2007).

  26. O. Rahmonov and J. Piątek, “Sand Colonization and Initiation of Soil Development by Cyanobacteria and Algae,” Ekologia (Bratislava) 26, 51–62 (2007).

    Google Scholar 

  27. C. Saiz-Jimenez and J. W. De Leeuw, “Chemical Characterization of Soil Organic Matter Fractions by Analytical Pyrolysis-Gas Chromatography-Mass Spectrometry,” J. Anal. Appl. Pyrol. 9, 99–119 (1986).

    Article  Google Scholar 

  28. H. R. Schulten, C. Sorge-Lewin, and M. Schnitzer, “Structure of ‘Unknown’ Soil Nitrogen Investigated by Analytical Pyrolysis,” Biol. Fertil. Soils 24, 249–254 (1997).

    Article  Google Scholar 

  29. H. R. Schulten and M. Schnitzer, “The Chemistry of Soil Organic Nitrogen: a Review,” Biol. Fertil. Soils 26, 1–15 (1998).

    Article  Google Scholar 

  30. D. L. Sparks, Environmental Soil Chemistry (Academic Press, 2003), 352 pp.

  31. B. A. Stankiewicz, P. F. van Bergen, M. B. Smith, et al., “Comparison of the Analytical Performance of Filament and Curie-Point Pyrolysis Devices,” J. Anal. Appl. Pyrol. 45, 133–151 (1998).

    Article  Google Scholar 

  32. B. W. Strobel, I. Bernholf, and O. K. Borggaard, Low-Molecular-Weight Aliphatic Carboxylic Acids in Soil Solutions under Different Vegetations Determined by Capillary Zone Electrophoresis,” Plant Soil 212, 115–121 (1999).

    Article  Google Scholar 

  33. T. I. Stuczynski, G. W. McCarty, J. B. Reeves, and R. J. Wright, “Use of Pyrolysis GC-MS for Assessing Changes in Soil Organic Matter Quality,” Soil Sci. 162(2), 97–105 (1997).

    Article  Google Scholar 

  34. T. Szczypek and J. Wach, “Accumulation Phases of the Quaternary Deposits in the Błędów Desert Based on Lithological Studies,” Quaest. Geogr., No. 2, 137–145 (1989).

  35. T. Szczypek, J. Wach, and S. Wika, “Zmiany krajo-brazów Pustyni Błędowskiej,” WNoZ UŚ, 87 (1994).

  36. E. W. Tegelaar, J. W. de Leeuw, and C. Saiz-Jimenez, “Possible Origin of Aliphatic Moieties in Humic Substances,” Sci. Total Environ. 81–82, 1–17 (1989).

    Google Scholar 

  37. P. Tinoco, G. Almendros, and F. J. Conzález-Vila, “Impact of the Vegetation on Lignin Pyrolytic Signature of Soil Humic Acids from Mediterranean Soils,” J. Anal. Appl. Pyrol. 64, 407–420 (2002).

    Article  Google Scholar 

  38. O. A. Trubetskoi, O. E. Trubetskaya, and C. Saiz-Jimenez, “The Study of Stable Electrophoretic Fractions of Humic Acid by Pyrolytic Gas Chromatography-Mass Spectrometry,” Pochvovedenie, No. 11, 1341–1344 (2005) [Eur. Soil Sci. 38 (11), 1183–1189 (2005)].

  39. World Reference Base for Soil Resources (FAO, ISRIC, and ISSS, Rome, 1998).

  40. N. Van Breemen and P. Buurman, Soil Formation (Kluwer, Dortrecht, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oimahmad Rahmonov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmonov, O., Kowalski, W.J. & Bednarek, R. Characterization of the soil organic matter and plant tissues in an initial stage of the plant succession and soil development by means of curie-point pyrolysis coupled with GC-MS. Eurasian Soil Sc. 43, 1557–1568 (2010). https://doi.org/10.1134/S1064229310130144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310130144

Keywords

Navigation