Skip to main content
Log in

Challenges of pedodiversity in soil science

  • Soil Genesis
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil diversity is not a completely new concept in soil science. It has been discussed from early times but it was not challenged this much broad. Ibañez with introducing the pedodiversity opened a new conceptual window to ease the induction of the soils complexity, spatial and temporal evolution and distribution. Pedodiversity now attracts more attention and goes to open new windows in soil science. Pedodiversity faces now with different challenges, which could be critical in its way on. Do the current soil diversity indices conceptually define all aspects of soil variability, or do we need to bind them with other characteristics like taxonomic distances? How is the soil individualism defined within the context of spatial variability and soil continuum? How are pedocomplexity, connectance, pedodiversity and soil spatial structure related? Can the changes of soil diversity be accounted as the rate of soil development? Can a range of pedodiversity index be a scale for soil series definition? Initial and some of current pedodiversity studies were/are focused on the concepts and measurement of pedodiversity and soil complexity indices of soilscape compared with the biological diversity and complexity. However, for the pedogenetic studies, the most important issues are the evolutionary concerns out of this approach compared with the other biotic systems. The new contexts, which should be more undertaken in future studies are: functional diversity, temporal diversity, study of soil and landform extinction and preservation. The last question could be: how pedodiversity could be changed under different understanding levels? A case study has been carried out in Charmahal and Bakhtiary province, Iran. Its objectives are the following: comparing the pedodiversity indices combined with and without taxonomic distances within tow replication of a geomorphic surface (Pi 111). What the pedodiversity says here? Did the unique calcification process which rules the soil formation here result in endemism or soil zonality? Do different pedodiversity indices correlate with the soil patterns?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Agterberg, “Trend Surface Analysis,” in: Spatial Statistics and Models, Ed. by G. L. Gaile and C. J. Willmott (Reidel, Dordrecht, the Netherlands, 1984), pp. 147–171.

    Google Scholar 

  2. A. K. Bregt, J. J. Stoorvogel, J. Bouma, and A. Stein, “Mapping Ordinal Data in Soil Survey: a Costa Rican Example,” Soil Sci. Soc. Am. J. 56, 525–531 (1992).

    Article  Google Scholar 

  3. P. A. Burrough, “Soil Variability: a Late 20th Century View,” Soils Fert. 56, 529–562 (1993).

    Google Scholar 

  4. J. A. Camargo, “On the Concept of Pedodiversity and Its Measurement,” Geoderma 93, 335–338 (1999).

    Article  Google Scholar 

  5. C. A. Cambardella, T. B. Moorman, T. B. Parkin, et al. “Field Scale Variability of Soil Properties in Central Iowa Soils,” Soil Sci. Soc. Am. J. 58, 1501–1511 (1994).

    Article  Google Scholar 

  6. K. R. Clarke, and R. M. Warwick, “A Taxonomic Distinctness Index and Its Statistical Properties,” J. Appl. Ecol. 35, 523–531 (1998).

    Article  Google Scholar 

  7. J. Chen, X. Zhang, and G. Zitong, “Pedodiversity: a Controversial Concept,” J. Geogr. Sci. 11(1), 110–116 (2001).

    Article  Google Scholar 

  8. D. Corenblit, J. Steiger, A. M. Gurnell, and E. Tabacchi, “Darwinian Origin of Landforms,” Earth Surf. Proc. Landf. 32, 2070–2073 (2007).

    Article  Google Scholar 

  9. D. Corenblit, A. M. Gurnell, J. Steiger, and E. Tabacchi, “Reciprocal Adjustments between Landforms and Living Organisms: Extended Geomorphic Evolutionary Insights,” Catena 73, 261–273 (2008).

    Article  Google Scholar 

  10. R. Corstanje, S. Grunwald, K. R. Reddy, et al. “Assessment of the Spatial Distribution of Soil Properties in a Northern Everglades Marsh,” J. Environ. Qual. 35, 938–949 (2006).

    Article  Google Scholar 

  11. C. M. Crain and M. D. Bertness, “Ecosystem Engineering across Environmental Gradients: Implications for Conservation and Management,” Bioscience 56, 211–218 (2006).

    Article  Google Scholar 

  12. R. Dawkins, The Extended Phenotype: The Gene as the Unit of Selection (University Press, Oxford, 1982),307 pp.

    Google Scholar 

  13. V. M. Fridland, The Pattern of the Soil Cover (Israel Program for Scientific Translations, Jerusalem, 1976).

    Google Scholar 

  14. E. J. Gabet, O. J. Reichmann, and E. W. Seabloom, “The Effects of Bioturbation on Soil Processes and Sediment Transport,” Ann. Rev. Earth Planet. Sci. 31, 249–273 (2003).

    Article  Google Scholar 

  15. M. Grzebyk and D. Dubrucq, “Quantitative Analysis of Distribution of Soil Types: Evidence of an Evolutionary Sequence in Amazonia,” Geoderma 62, 285–298 (1994).

    Article  Google Scholar 

  16. M. A. Gual and B. R. Norgaard, “Bridging Ecological and Social Systems Coevolution: a Review and Proposal,” Ecol. Econ. (2008).

  17. Y. Guo, P. Gong, and R. Amundson, “Pedodiversity in the United States of America,” Geoderma 117, 99–115 (2003).

    Article  Google Scholar 

  18. F. D. Hole and J. B. Campbell, Soil Landscape Analysis (Rowman and Allanheld, Totowa, 1985).

    Google Scholar 

  19. M. R. Hoosbeek, and R. B. Bryant, “Towards the Quantitative Modeling of Pedogenesis: a Review,” Geoderma 55, 183–210 (1992).

    Article  Google Scholar 

  20. J. J. Ibanez, “Evolution of Fluvial Dissection Landscapes in Mediterranean Environments: Quantitative Estimates and Geomorphic, Pedologic, and Phytocenotic Repercussions,” Z. Geomorphol. 38, 105–119 (1994).

    Google Scholar 

  21. J. J. Ibanez, “Perspectives and Challenges of Pedodiversity Analysis,” in The 18th World Congress of Soil Science, Philadelphia, USA, 2006).

  22. J. J. Ibanez and J. Boixadera, “The Search for a New Paradigm in Pedology: a Driving Force for New Approaches to Soil Classification,” in Soil Classification, Ed. by E. Micheli, F. O. Nachtergaele, R. J. A. Jones, and L. Montanarella (FAO, Rome, 2002), pp. 93–110.

    Google Scholar 

  23. J. J. Ibanez, R. J. Ballexta, and A. G. Alvarez, “Soil Landscapes and Drainage Basins in Mediterranean Mountain Areas,” Catena 17, 573–583 (1990).

    Article  Google Scholar 

  24. J. J. Ibáñez, G. A. Alvarez, and J. Boixadera, “Current Paradoxes in Soil Survey,” in The 1st Meeting of the Soils Information Focal Point’s, Hannover, 1994 (EU-Working Group on Soils Information System Development, Hannover, 1994a).

    Google Scholar 

  25. J. J. Ibanez, S. De-Alba, F.F. Bermudez, and A. Garcia-Alvarez, “Pedodiversity: Concepts and Measures,” Catena 24, 215–232 (1995).

    Article  Google Scholar 

  26. J. J. Ibanez, A., Saldana, S., De-Alba, and J. Camargo, “In Discussion of: J. J. Ibáñez, S. De-Alba, A. Lobo, V. Zucarello, ‘Pedodiversity and Global Soil Patterns at Coarse Scales’,” Geroderma, 83, 206–211 (1998a).

    Google Scholar 

  27. J. J. Ibanez, S. De-Alba, A. Lobo, and V. Zucarello, “Pedodiversity and Global Soil Patterns at Coarse Scales (with Discussion),” Geoderma 83, 171–192 (1998b).

    Article  Google Scholar 

  28. J. J. Ibanez, M. Ruiz-Ramos, and A. M. Tarquis, “Mathematical Structures of Biological and Pedological Taxonomies“ Geoderma, 134 360–372 (2006).

    Article  Google Scholar 

  29. J. J. Ibanez, M. Ruiz Ramos, J. A. Zinck, and A. Brú, “Classical Pedology Questioned and Defended,” Eur. Soil Sci. 38(Suppl. 1), 75–80 (2005b).

    Google Scholar 

  30. H. Jenny, Factors of Soil Formation, in a System of Quantitative Pedology (McGraw-Hill, New York, 1941), 109 pp.

    Google Scholar 

  31. D. L. Johnson, “Darwin Would Be Proud: Bioturbation, Dynamic Denudation, and the Power of Theory in Science,” Geoarchaeology 17, 631–632 (2002).

    Article  Google Scholar 

  32. C. G. Jones, J. H. Lawton, and M. Shachak, “Organisms as Ecosystem Engineers,” Oikos 69, 73–386 (1994).

    Article  Google Scholar 

  33. C. G. Jones, J. H. Lawton, and M. Shachak, “Positive and Negative Effects of Organisms as Physical Ecosystem Engineers,” Ecology 78, 1946–1957 (1997).

    Article  Google Scholar 

  34. R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren, Data Analysis in Community and Landscape Ecology (Pudoc, Wageningen) (1987).

    Google Scholar 

  35. A. N. Kravchenko, “Influence of Spatial Structure on Accuracy of Interpolation Methods,” Soil Sci. Soc. Am. J. 67, 1564–1571 (2003).

    Article  Google Scholar 

  36. G. Kylafis, and M. Loreau, “Ecological and Evolutionary Consequences of Niche Construction or Its Agent,” Ecol. Lett. 11, 1072–1081 (2008).

    Article  Google Scholar 

  37. A. E. Magurran, Ecological Diversity and Its Measurement (Croom Helm, London, 1988).

    Google Scholar 

  38. A. B. McBratney, “On Variation, Uncertainty, and Informatics in Environmental Soil Management,” Austr. J. Soil Res. 30, 913–936 (1992).

    Article  Google Scholar 

  39. A. B. McBratney, “Pedodiversity: Newsletter of International Society of Soil Science Working Group on Pedometrics,” Pedometron 3, 1–3 (1995).

    Google Scholar 

  40. A. B. McBratney and B. Minasny, “On Measuring Pedodiversity,” Geoderma 141, 149–154 (2007).

    Article  Google Scholar 

  41. A. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, and M.S. Shatar, “An Overview of Pedometric Techniques for Use in Soil Survey,” Geoderma 97, 293–307 (2000).

    Article  Google Scholar 

  42. B. Minasny, and A. B. McBratney, “Incorporating Taxonomic Distance into Spatial Prediction and Digital Mapping of Soil Classes,” Geoderma 142, 285–293 (2007).

    Article  Google Scholar 

  43. B. Minasny, A. B. McBratney, and A. E. Hartemink, “Global Pedodiversity, Taxonomic Distance, and the World Reference Base,” Geoderma (2009).

  44. F. J. R. Meysman, J. J. Middelburg, and C. H. R. Heip, “Bioturbation: a Fresh Look at Darwin’s Last Idea,” Trends Ecol. Evol. 21, 688–695 (2006).

    Article  Google Scholar 

  45. I. O. A. Odeh, “In Discussion of: J. J. Ibaiiez, S. De-Alba, A. Lobo, V. Zucarello, ‘Pedodiversity and Global Soil Patterns at Coarse Scales’,” Geoderma 83, 193–196 (1998).

    Article  Google Scholar 

  46. F. J. Odling-Smee, K. N. Laland, and M. W. Feldman, Niche Construction: The Neglected Process in Evolution, Monographs in Population Biology, 37 (Princeton University Press, Princeton, 2003), 472 pp.

    Google Scholar 

  47. J. D. Phillips, “Divergent Evolution and the Spatial Structure of Soil Landscape Variability,” Catena 43, 101–113 (2001).

    Article  Google Scholar 

  48. J. D. Phillips, “Soils as Extended Composite Phenotypes,” Geoderma 149, 143–151 (2009).

    Article  Google Scholar 

  49. J. D. Phillips, and D. A. Marion, “Biomechanical Effects, Lithological Variations, and Local Pedodiversity in Some Forest Soils of Arkansas,” Geoderma 124, 73–89 (2005).

    Article  Google Scholar 

  50. C. R. Rao, “Diversity and Dissimilarity Coefficients-a Unified Approach,” Theor. Popul. Biol. 21, 24–43 (1982).

    Article  Google Scholar 

  51. C. Ricotta and G. C. Avena, “An Information-Theoretical Measure of Taxonomic Diversity,” Acta Biotheor. 51, 35–41 (2003).

    Article  Google Scholar 

  52. A. Saldana and J. J. Ibanez, “Pedodiversity Analysis at Large Scales: an Example of Three Fluvial Terraces of the Henares River (Central Spain),” Geomorphology (2004).

  53. A. Saldana and J. J. Ibanez, “Pedodiversity, Connectance, and Spatial Variability of Soil Properties, What Is the Relationship?,” Ecol. Model. 208, 342–352 (2007).

    Article  Google Scholar 

  54. A. Saldana, A. Stein, and J. A. Zinck, “Spatial Variability of Soil Properties at Different Scales within Tree Terraces of the Henares River (Spain),” Catena 33, 139–153 (1998).

    Article  Google Scholar 

  55. B. C. Scharenbroch and J. G. Bockheim, Pedodiversity in an Old-Growth Northern Hardwood Forest in the Hurn Mountains, Upper Peninsula (Michigan, 2007), www.cjfr.nrc.ca.

  56. C. A. Schloeder, N. E. Zimmerman, and M. J. Jacobs, “Comparison of Methods for Interpolating Soil Properties Using Limited Data,” Soil Sci. Soc. Am. J. 65, 470–479 (2001).

    Article  Google Scholar 

  57. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Univ. Illinois Press, Urbana, 1948), 237 pp.

    Google Scholar 

  58. V. A. Sidorova and P. V. Krasilnikov, “Soil-Geographic Interpretation of Spatial Variability in the Chemical and Physical Properties of Topsoil Horizons in the Steppe Zone,” Eur. Soil Sci. 40(10), 1042–1051 (2007).

    Article  Google Scholar 

  59. Field Book for Describing and Sampling Soils, Version 2.0, Ed. by P. J. Schoeneberger, D. A. Wysocki, E. C. Benham, and W. D. Broderson (Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE, 2002).

    Google Scholar 

  60. Soil Survey Staff, Soil Survey Laboratory Methods Manual, Report No. 42 (USDA, NRCS, NCSS, 1996).

  61. Soil Survey Staff, Keys to Soil Taxonomy, 10th ed. (NRCS, USDA, 2006).

  62. J. A. Stallins, “Geomorphology and Ecology: Unifying Themes for Complex Systems in Biogeomorphology,” Geomorphology 77, 207–216 (2006).

    Article  Google Scholar 

  63. B. B. Trangmar, R. S. Yost, and G. Uehara, “Application of Geostatistics to Spatial Studies of Soil Properties,” Adv. Agron. 38, 45–93 (1985).

    Article  Google Scholar 

  64. N. Toomanian, A. Jalalian, A. H. Khademi, et al., “Pedodiversity and Pedogenesis in Zayandeh-Rud Valley, Central Iran,” Geomorphology 81, 376–393 (2006).

    Article  Google Scholar 

  65. N. van Breemen, “Soils as Biotic Constructs Favoring Net Primary Productivity,” Geoderma 57, 183–211 (1993).

    Article  Google Scholar 

  66. N. van Breemen and A. C. Finzi, “Plant-Soil Interactions: Ecological Aspects and Evolutionary Implications,” Biogeochemistry 42, 1–19 (1998).

    Article  Google Scholar 

  67. M. J. Vepraskas, “In Discussion of: J. J. Ibaiiez, S. DeAlba, A. Lobo, V. Zucarello, ‘Pedodiversity and Global Soil Patterns at Coarse Scales’,” Geroderma 83, 205–206 (1998).

    Google Scholar 

  68. R. H. Whittaker, “Evolution of Species Diversity in Land Communities,” in Evolutionary Biology, Ed. by M. K. Hecht, W. C. Steere, and B. Wallace, (Plenum, New York, 1977), Vol. 10, pp. 1–67.

    Google Scholar 

  69. X. Zhang, J. Chen, G. Zhang, and T. Manzhi, “Pedodiversity Analysis in Hainan Island,” J. Geogr. Sci. 13(2) 181–186 (2003).

    Article  Google Scholar 

  70. J. A. Zinck, Physiography and Soils: Soil Survey Courses (ITC, Enschede, the Netherlands, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Toomanian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toomanian, N., Esfandiarpoor, I. Challenges of pedodiversity in soil science. Eurasian Soil Sc. 43, 1486–1502 (2010). https://doi.org/10.1134/S1064229310130089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310130089

Keywords

Navigation