Skip to main content
Log in

Effect of the temperature and moisture on the N2O emission from some arable soils

  • Agrochemistry and Fertility of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of the temperature and moisture on the emission of N2O from arable soils was studied in model experiments with arable soils at three contrasting levels of wetting and in a wide temperature range (from −5 to +25°C), including freeze-thaw cycles. It was shown that the losses of fertilizer nitrogen from the soils with water contents corresponding to 60 and 75% of the total water capacity (TWC) did not exceed 0.01–0.09% in the entire temperature range. In the soils with an elevated water content (90% of the TWC) at 25°C, the loss of fertilizer nitrogen in the form of N2O reached 2.35% because of the active denitrification. The extra N2O flux initiated by the freeze-thaw processes made up 88–98% of the total nitrous oxide flux during the entire experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Alifanov, L. A. Gugalinskaya, and L. A. Ivannikova, “Assessment and Prediction of the Hydrothermic Conditions of Pedogenesis for Gray Soils,” in Soil Processes and the Spatial-Temporal Organization of Soils, V. N. Kudeyarov (Ed.) (Nauka, Moscow, 2006), pp. 248–271 [in Russian].

    Google Scholar 

  2. I. P. Bab’eva and G. M. Zenova, Soil Biology (Izd. Mosk. Gos. Univ., Moscow, 1983), 248 pp. [in Russian].

    Google Scholar 

  3. V. N. Bashkin, Agrogeochemistry of Nitrogen (Pushchino, 1987), 270 pp. [in Russian].

  4. A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986), 416 pp. [in Russian].

    Google Scholar 

  5. V. N. Kudeyarov, “Nitrogen Cycle and Nitrous Oxide Production,” Pochvovedenie, No. 8, 988–998 (1999) [Eur. Soil Sci. 32 (8), 892–901 (1999)].

  6. V. N. Kudeyarov, Nitrogen Cycle in Soil and Fertilizer Efficiency (Nauka, Moscow, 1989), 216 pp. [in Russian].

    Google Scholar 

  7. V. O. Lopes de Gerenyu, I. N. Kurganova, R. Tune, and H. Loftfield, “Impact of Freeze-Thaw Processes on the Emission of Greenhouse Gases from an Arable Brown Forest Soil,” Agrokhimiya, No. 2, 23–30 (2004).

  8. A. L. Stepanov, Extended Abstract of Doctoral Dissertation in Biology (Moscow State Univ., Moscow, 2000).

    Google Scholar 

  9. K. Austnes, A. O. Stuanes, “Effect of Freeze-Thaw Episodes on Mobilization of TOC and YON from Boreal Heathland Catchments A Field Experiment,” Int. Symp. Soil Processes under Extreme Meteorological Conditions, Univ. of Bayreuth, Germany, February 25th–28th, 2007), p. 35.

    Google Scholar 

  10. A. F. Bouwman, “Direct Emissions of Nitrous Oxide from Agriculture Soil,” Nutrient Cycling in Agroecosystems 46, 53–70 (1996).

    Article  Google Scholar 

  11. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil,” Soil Biol. Biochem. 17, 837–832 (1985).

    Article  Google Scholar 

  12. R. Brumme, W. Borken, and S. Finke, “Hierarchical Control on Nitrous Oxide Emissions in Forest Ecosystems,” Glob. Biogeochem. Cycles 13, 1137–1148 (1999).

    Article  Google Scholar 

  13. D. L. Burton and E. G. Beauchamp, “Profile Nitrous Oxide and Carbon Dioxide Concentrations in a Soil Subject To Freezing,” Soil Sci. Soc. Am. J. 58, 115–122 (1994).

    Article  Google Scholar 

  14. Y. Chen, S. Tessier, A. F. MacKenzie, and M. R. Laverdiere, “Nitrous Oxide Emission from an Agricultural Soil Subjected to Different Freeze-Thaw Cycles,” Agric. Ecosyst. Environ. 55, 123–128 (1995).

    Article  Google Scholar 

  15. S. Christensen and B. T. Christensen, “Organic Matter Available for Denitrification in Different Soil Fractions: Effect of Freeze/Thaw Cycles and Straw Disposal,” J. Soil Sci. 42, 637–647 (1991).

    Article  Google Scholar 

  16. S. Christensen and J. M. Tiedje, “Brief and Vigorous N2O Production by Soil at Spring Thaw,” J. Soil Sci. 41, 1–4 (1990).

    Article  Google Scholar 

  17. H. Clayton, I. P. McTaggart, J. Parker, et al., “Nitrous Oxide Emission from Fertilized Grassland: A 2-Year Study of the Effect of N-Fertilizer Form and Environmental Conditions,” Biol. Fert. Soils 25, 252–260 (1997).

    Article  Google Scholar 

  18. P. J. Crutzen, “Global Budgets for Non-CO2 Greenhouse Gases,” Environ. Monit. Assess. 31, 1–15 (1994).

    Article  Google Scholar 

  19. E. A. Davidson, “Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystem,” in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (Eds.), Am. Soc. for Microbiol. (Washington, DC, 1991), pp. 219–235.

  20. E. A. Davidson, I. A. Janssens, and Y. Luo, “On the Variability of Respiration in Terrestrial Ecosystems: Moving Beyond Q10,” Global Change Biol. 12, 154–164 (2006).

    Article  Google Scholar 

  21. E. A. Davidson and L. V. Verhot, “Testing the Hole-In-The-Pipe Model of Nitric and Nitrous Oxide Emissions from Soils Using the TRAGNET Database,” Glob. Biogeoch. Cycles 14, 1035–104 (2000).

    Article  Google Scholar 

  22. T. A. Doane and W. R. Horwath, Analyt. Letters 36, 2713 (2003).

    Article  Google Scholar 

  23. K. E. Dobbie and K. A. Smith, “Nitrous Oxide Emission Factors for Agricultural Soils in Great Britain: The Impact of Soil Water-Filled Pore Space and Other Controlling Variables,” Glob. Ñhange Biol. 9, 204–218 (2003).

    Article  Google Scholar 

  24. K. E. Dobbie and K. A. Smith, “The Effect of Temperature, Water-Filled Pore Space and Land Use on N2O Emission from an Imperfectly Drained Gleysol,” Eur. J. Soil Sci. 52, 667–673 (2001).

    Article  Google Scholar 

  25. K. E. Dobbie, I. P. McTaggart, and K. A. Smith, “Nitrous Oxide Emissions from Intensive Agricultural Systems: Variation Between Crops and Seasons, Key Driving Variables, and Mean Emission Factors,” J. Geophys. Res. 104, 26891–26899 (1999).

    Article  Google Scholar 

  26. A. C. Edwards and M. S. Cresser, “Freezing and Its Effect on Chemical and Biological Properties of Soil,” in Advances in Soil Science, B. A. Steward (Ed.), Vol. 18, pp. 59–79 (1992).

  27. H. Flessa, P. Dörsch, and F. Beese, “Seasonal Variation of N2O and CH4 Fluxes in Differently Managed Arable Soils in Southern Germany,” J. Geophys. Res. 100(23), 115–124 (1995).

    Google Scholar 

  28. J. C. Forster, Methods in Applied Soil Microbiology and Biochemistry, K. Alef and P. Nannipieri (Eds.) (Academic Press, San-Diego, 1995), pp. 79–87.

    Google Scholar 

  29. L. Holtan-Hartwig, P. Dorsch, and L. R. Bakken, “Low Temperature Control of Soil Denitrifying Conmmunities: Kinetics of N2O Production and Reduction,” Soil Biol. Biochem. 34, 1797–1806 (2002).

    Article  Google Scholar 

  30. P.-A. Jacinthe, W. A. Dick, and L. B. Owens, “Overwinter Soil Denitrification Activity and Mineral Nitrogen Pools as Affected by Management Practices,” Biol. Fertil. Soils 36, 1–9 (2002).

    Article  Google Scholar 

  31. I. A. Janssens and K. Pilegaard, “Large Seasonal Changes in Q10 of Soil Respiration in a Beech Forest,” Glob. Change Biol., No. 9, 911–918 (2003).

  32. R. G. Joergensen, “The Fumigation-Extraction Method to Estimate Soil Microbial Biomass: Calibration of the KEC Value,” Soil Biol. Biochem. 28(1), 25–31 (1996).

    Article  Google Scholar 

  33. R. G. Joergensen and T. Mueller, “The Fumigation-Extraction Method to Estimate Soil Microbial Biomass: Calibration of the kEN Value,” Soil Biol. Biochem. 28(1), 33–37 (1996).

    Article  Google Scholar 

  34. H. F. Jungkunst, A. Freibauer, H. Neufildt, and G. Bareth, “Nitrous Oxide Emissions from Agricultural Land in Germany a Synthesis of Available Annual Field Data,” J. Plant Nutr. Soil Sci. 169, 341–351 (2006).

    Article  Google Scholar 

  35. E.-A. Kaiser and O. Heinemeyer, “Temporal Changes in N2O Losses from Two Arable Soils,” Plant Soil 181, 57–63 (1996).

    Article  Google Scholar 

  36. E.-A. Kaiser, K. Kohres, M. Kücke, et al., “Nitrous Oxide Release from Arable Soil: Importance of N-Fertilisation, Crops and Temporal Variation,” Soil Biol. Biochem. 30, 1553–1563 (1998).

    Article  Google Scholar 

  37. T. Katterer, O. Andren, A. Reichstein, and A. Lomander, “Temperature Dependence of Organic Matter Decomposition: A Critical Review Using Literature Data Analyzed with Different Models,” Biol. Fertil. Soils 27, 258–262 (1998).

    Article  Google Scholar 

  38. H. T. Koponen and P. J. Martikainen, “Soil Water Content and Freezing Temperature Affect Freeze—Thaw Related N2O Production in Organic Soil,” Nutrient Cycling in Agroecosystems 69, 213–219 (2004).

    Article  Google Scholar 

  39. K. S. Larsen, S. Jonasson, and A. Mchelsen, “Repeated Freeze-Thaw Cycles and Their Effect on Biological Processes in Two Arctic Ecosystem Types,” Appl. Soil Ecol. 21, 187–195 (2002).

    Article  Google Scholar 

  40. R. L. Lemke, R. C. Izaurralde, S. S. Malhi, et al., “Nitrous Oxide Emission from Agricultural Soils of the Boreal and Parkland Region of Alberta,” Soil Sci. Soc. Am. J. 62, 1096–1102 (1998).

    Article  Google Scholar 

  41. N. Loftfield, H. Flessa, J. Augustin, and F. Beese, “Automated Gas Chromatographic System for Rapid Analysis of Atmospheric Trace Gases: Methane, Carbon Dioxide and Nitrous Oxide,” J. Environ. Qual. 26, 560–564 (1997).

    Article  Google Scholar 

  42. E. Matzner and W. Borken, “Do Freeze-Thaw Events Enhance C and N Losses from Soils of Different Ecosystems? A Review,” Eur. J. Soil Sci. 59, 274–284 (2008).

    Article  Google Scholar 

  43. K. M. Miranda, M. G. Espey, and D. A. Wink, “Unique Oxidative Mechanisms for the Reactive Nitrogen Oxide Species,” Nitric Oxide: Biology and Chemistry 5, 5–62 (2001).

    Article  Google Scholar 

  44. A. R. Moiser and C. Kroeze, “Contribution of Agroecosystems to the Global N2O Budget,” Int. Workshop on Reducing N 2 O Emission from Agroecosystems, Alberta Agric. Foods and Rural Development, Banff, Alberta, Canada, March 3–5, 1999.

  45. C. R. Morley, J. A. Trofimov, D. C. Coleman, and C. Cambardella, “Effects of Freeze-Thaw Stress on Bacterial Population on Soil Microcosms,” Microb. Ecol. 9, 329–340 (1983).

    Article  Google Scholar 

  46. M. Prather, R. Derwent, D. Ehhalt, et al., “Other Trace Gases and Atmospheric Chemistry,” in Climate Change. Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 Emission Increase J. T. Houghton et al. (Eds.) (Cambridge Univ. Press, Cambridge, 1994), pp. 77–126.

    Google Scholar 

  47. M. Röver, O. Heinemeyer, and E.-A. Kaiser, “Microbial Induced Nitrous Oxide Emissions from an Arable Soil during Winter,” Soil Biol. Biochem 30, 1859–1865 (1998).

    Article  Google Scholar 

  48. J. P. Schimel and J. S. Clein, “Microbial Response to Freeze-Thaw Cycles in Tundra and Taiga Soils,” Soil Biol. Biochem. 28, 1061–1066 (1996).

    Article  Google Scholar 

  49. T. Skogland, S. Lomeland, and J. Goksoyr, “Respiratory Burst after Freezing and Thawing of Soil: Experiments with Soil Bacteria,” Soil Biol. Biochem. 20, 851–856 (1988).

    Article  Google Scholar 

  50. Soil Survey Investigation Report No. 42, Version 3.0 (January 1996).

  51. R. Teepe, R. Brumme, and F. Beese, “Nitrous Oxide Emission from Frozen Soils under Agricultural, Fallow and Forest Land,” Soil Biol. Biochem. 32, 1807–1810 (2000).

    Article  Google Scholar 

  52. R. Teepe, R. Brumme, and F. Beese, “Nitrous Oxide Emission from Soil during Freezing and Thawing Periods,” Soil Biol. Biochem. 33, 1269–1275 (2001).

    Article  Google Scholar 

  53. J. W. Van Groningen, G. J. Kasper, G. L. Velthof, et al., “Nitrous Oxide Emission from Silage Maize Fields under Different Mineral Nitrogen Fertilizer and Slurry Applications,” Plant Soil 263, 101–111 (2004).

    Article  Google Scholar 

  54. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An Extraction Method for Measuring Soil Microbial Biomass-C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  55. C. Wagner-Riddle, G. W. Thurtell, G. K. Kidd, et al., “Estimates of Nitrous Oxide Emissions from Agriculture Fields over 28 Months,” Can. J. Soil Sci. 77, 135–144 (1997).

    Google Scholar 

  56. F. L. Wang and J. R. Bettany, “Influence of Freeze-Thaw and Flooding on the Loss of Soluble Organic Carbon and Carbon Dioxide from Soil,” J. Environ. Qual. 22, 709–714 (1993).

    Article  Google Scholar 

  57. N. Wrage, J. Lauf, A. del Prado, et al., “Distinguishing Sources of N2O in European Grassland by Stable Isotope Analysis,” Rapid Commun. Mass Spectrom. 18, 1201–1207 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kurganova.

Additional information

Original Russian Text © I.N. Kurganova, V.O. Lopes de Gerenyu, 2010, published in Pochvovedenie, 2010, No. 8, pp. 984–994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurganova, I.N., Lopes de Gerenyu, V.O. Effect of the temperature and moisture on the N2O emission from some arable soils. Eurasian Soil Sc. 43, 919–928 (2010). https://doi.org/10.1134/S1064229310080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310080090

Keywords

Navigation