Skip to main content
Log in

Carbon dioxide emissions from agrogray soils under climate changes

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of droughts and drying-wetting cycles on the respiration activity of agrogray soils was studied in field and laboratory experiments. The alternation of drought periods and rains during the vegetation season did not increase the annual emission of CO2 from the soils under a sown meadow and an agrocenosis. In laboratory experiments, the wetting of dried soil released 1–1.5% of Corg with a high decomposition constant n × 10−1 day−1 and a very short renewal time (2.1–2.4 days); therefore, an abrupt change in the wetting conditions did not intensify the loss of soil carbon under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Alekhina and T. G. Dobrovol’skaya, “The Structural Changes in Bacterial Communities of Soddy Gleysols Caused by Their Drying,” Pochvovedenie, No. 9, 1140–1143 (1999) [Eur. Soil Sci. 32 (9), 1023–1026 (1999)].

  2. V. M. Alifanov, L. A. Gugalinskaya, and L. A. Ivannikova, “The Assessment and Forecast of Hydrothermic Conditions of Soil Formation in Gray Soils,” in Soil Processes and the Spatial—Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 471–494 [in Russian].

    Google Scholar 

  3. N. D. Anan’eva, E. V. Blagodatskaya, and T. S. Demkina, “The Effect of Drying—Moistening and Freezing-Thawing on Soil Microbial Communities’ Resilience,” Pochvovedenie, No. 9, 1132–1137 (1997) [Eur. Soil Sci. 30 (9), 1010-1024 (1997)].

  4. E. V. Blagodatskaya, T. E. Khomutova, E. G. Dem’yanova, and N. D. Anan’eva, “The Influence of Different Regimes of Drying and Thermal Treatment of Soils under Sown Meadow in the Indices of Respiration Activity of Soil Microorganisms,” Agrokhimiya, No. 3, 55–61 (2002).

  5. A. N. Zolotokrylin, V. V. Vinogradova, and E. A. Cherenkova, “Dynamics of Droughts in the European Territory of Russia upon Global Warming,” in Problems of the Ecological Monitoring and Modeling of Ecosystems (Gidrometeoizdat, St. Petersburg, 2007), Vol. XXI, pp. 160–182 [in Russian].

    Google Scholar 

  6. A. L. Ivanov, “Problems of Global Technogenesis and Climate Changes in Agroindustry,” in Proc. of the World Conf. on Climate Change (Moscow, 2004), pp. 339–346 [in Russian].

  7. Yu. A. Izrael’ and O. D. Sirotenko, “Modeling of the Effect of Climate Changes on the Agricultural Production in Russia,” Meteorol. Gidrol., No. 6, 5–17 (2003).

  8. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  9. V. N. Kudeyarov and I. N. Kurganova, “Respiration of Russian Soils: Database Analysis, Long-Term Monitoring, and General Estimates,” Pochvovedenie, No. 9, 1112–1121 (2005) [Eur. Soil Sci. 33 (9), 983–992 (2005)].

  10. V. N. Kudeyarov, F. I. Khakimov, N. F. Deeva, et al., “Assessment of Soil Respiration in Russia,” Pochvovedenie, No. 1, 33–42 (1995).

  11. A. A. Larionova and L. N. Rozanova, “The Influence of Water Regime on the Respiration Intensity in Gray Forest Soil and Peat,“ Pochvovedenie, No. 6, 43–48 (1993).

  12. A. A. Larionova and L. N. Rozanova, “Daily, Seasonal, and Annual Dynamics of the CO2 Emission from Soil,” in Soil Respiration (ONTI PNTs RAN, Pushchino, 1993), pp. 59–68 [in Russian].

    Google Scholar 

  13. A. A. Larionova, L. N. Rozanova, I. V. Evdokimov, and A. M. Ermolaev, “Carbon Budget in Natural and Anthropogenic Forest-Steppe Ecosystems,” Pochvovedenie, No. 2, 177–185 (2002) [Eur. Soil Sci. 35 (2), 156–164 (2002)].

  14. V. P. Meleshko, G. S. Golitsyn, V. A. Govorkova, et al., “Potential Anthropogenic Changes of Russian Climate in the 21st Century: Assessments Based on a Range of Climatic Models,” in Proc. of the World Conf. on Climate Change (Moscow, 2004), pp. 216–225 [in Russian].

  15. A. T. Mokronosov, “Photosynthesis and Changes in the CO2 Concentration in the Atmosphere,” Priroda, No. 7, p. 25–27 (1994).

  16. N. Nakisenovich, “Scenarios of Climate Changes and Mitigation Technologies,” in Proc. of the World Conf. on Climate Change (Moscow, 2004), pp. 347–355 [in Russian].

  17. V. I. Nikitishen and E. V. Kurganova, Fertility and Fertilization of Gray Forest Soils in Opolie Landscapes of Central Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  18. D. S. Orlov and L. A. Grishina, Practicum on the Chemistry of Humus (Izd. Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  19. E. I. Pankova and A. F. Novikova, “Soil Degradation Processes on Agricultural Lands of Russia,” Pochvovedenie, No. 3, 366–379 (2000) [Eur. Soil Sci. 33 (3), 319–330 (2000)].

  20. A. A. Romanovskaya and R. T. Karaban’, “Budget of Soil Carbon in Cultivated Soils of Russia,” in Problems of the Ecological Monitoring and Modeling of Ecosystems (Gidrometeoizdat, St. Petersburg, 2007), Vol. XXI, pp. 58–74 [in Russian].

    Google Scholar 

  21. R. N. Ushakov, Problem of Soil Droughts in the Southern Part of the Nonchernozemic Zone of Russia (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  22. Ph. Ciais, M. Reichstein, N. Viovy, et al., “Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003,” Nature 437, 529–533 (2005).

    Article  Google Scholar 

  23. P. M. Cox, R. A. Betts, C. D. Jones, et al., “Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model,” Nature 408, 184–190 (2000).

    Article  Google Scholar 

  24. M. Cubasch, Projections of future climate change (Cambridge Univ. Press, Cambridge, 2001), p. 525–582.

    Google Scholar 

  25. N. Fierer and J. Schimel, “Effects of Drying-Rewetting Frequency on Soil Carbon and Nitrogen Transformations,” Soil Biol. Biochem. 34, 777–787 (2002).

    Article  Google Scholar 

  26. N. Fierer and J. Schimel, “A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly Observed Following the Rapid Rewetting of a Dry Soil,” Soil Sci. Soc. Am. J. 67, 798–805 (2003).

    Article  Google Scholar 

  27. D. S. Jenkinson, P. B. S. Hart, J. H. Rayner, L. C. Parry, “Modelling the Turnover of Organic matter in Long-Term Experiments at Rothamsted,” INTECOL Bull. 15, 1–8 (1987).

    Google Scholar 

  28. A. A. Larionova, A. M. Yermolayev, and S. A. Blagodatsky, “Soil Respiration and Carbon Balance of Gray Forest Soils As Affected by Land Use,” Biol. Fertil. Soils 27, 251–257 (1998).

    Article  Google Scholar 

  29. J. M. Melillo, A. D. McGuize, and D. W. Kicklighter, “Global Climate Change and Terrestrial Net Primary Production,” Nature 363, 234–240 (1993).

    Article  Google Scholar 

  30. S. Nilsson, A. Shvidenko, V. Stolbovoi, et al., Full Carbon Account for Russia Interim Report IR-00-021 (2000).

  31. M. Reichstein, J. Tenhunen, O. Roupsard, et al., “Severe Drought Effects on Ecosystem CO2 and H2O Fluxes at Three Mediterranean Evergreen Sites: Revision of Current Hypotheses?,” Global Change Biol. 8, 999–1017 (2002).

    Article  Google Scholar 

  32. H. H. Rogers and R. C. Dahlman, “Crop Responses to CO2 Enrichment,” Vegetatio 104–105, 117–131 (1991).

    Google Scholar 

  33. J. Smith, P. Smith, M. Wattenbach, et al., “Projected Changes in the Organic Carbon Stocks of Cropland Mineral Soils of European Russia and the Ukraine, 1990–2070,” Global Change Biol. 13, 342–356 (2007).

    Article  Google Scholar 

  34. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An Extraction Method for Measuring Soil Microbial Biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  35. J. Wu and P. C. Brookes, “The Proportional Mineralization of Microbial Biomass and Organic Matter Caused by Air-Drying and Rewetting of a Grassland Soil,” Soil Biol. and Biochem. 37, 507–515 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Larionova.

Additional information

Original Russian Text © A.A. Larionova, I.N. Kurganova, V.O. Lopes de Gerenyu, B.N. Zolotareva, I.V. Yevdokimov, V.N. Kudeyarov, 2010, published in Pochvovedenie, 2010, No. 2, pp. 186–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larionova, A.A., Kurganova, I.N., Lopes de Gerenyu, V.O. et al. Carbon dioxide emissions from agrogray soils under climate changes. Eurasian Soil Sc. 43, 168–176 (2010). https://doi.org/10.1134/S1064229310020067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310020067

Keywords

Navigation