Skip to main content
Log in

Specific 137Cs-sorption capacity parameters of soils and mineral sorbents

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The selective sorption of cesium by some soils, minerals, and natural mineral sorbents was studied using new methodological and experimental approaches. It was found that the total capacity of two types of highly selective sorption sites significantly differing (by several orders of magnitude) in the selectivity coefficients of Cs-K ion exchange makes up 0.5–6% of the total capacity of the ion exchanger. The values of the radiocesium interception potential were determined for the studied soils and minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrochemical Methods of Soil Examination (Nauka, Moscow, 1975) [in Russian].

  2. V. S. Anisimov, S. V. Kruglov, and R. M. Aleksakhin, et al., “The Effect of Potassium and Soil Acidity on the 137Cs Status in Soils and Its Accumulation by Barley Plants in a Pot Experiment,” Pochvovedenie, No. 11, 1323–1332 (2002) [Eur. Soil Sci. 35 (11), 1168–1177 (2002)].

  3. S. A. Barber, Soil Nutrient Bioavailability: A Mechanistic Approach, 2nd ed. (Wiley, New York, 1995).

    Google Scholar 

  4. S. V. Kruglov, L. G. Suslina, V. S. Anisimov, and R. M. Aleksakhin, “Effect of Increasing K+ and NH +4 Concentrations on the Sorption of Radiocesium by Sandy Soddy-Podzolic Soil and Leached Chernozem,” Pochvovedenie, No. 2, 161–171 (2005) [Eur. Soil Sci. 38 (2), 143–152 (2005)].

  5. Great Radiation Accidents: Consequences and Protection Measures, Ed. by L. A. Il’in and V. A. Gubanov (Moscow, 2001) [in Russian].

  6. J. P. Absalom, S. D. Young, N. M. J. Crout, et al., “Predicting Soil to Plant Transfer of Radiocesium Using Soil Characteristics,” Environ. Sci. Technol. 33, 1218–1223 (1999).

    Article  Google Scholar 

  7. M. F. Benedetti, C. J. Miln, D. G. Kinniburgh, et al., “Metal Ion Binding to Humic Substances: Application of the Non-Ideal Competitive Adsorption Model,” Environ. Sci. Technol. 29(2), 446–457 (1995).

    Article  Google Scholar 

  8. G. H. Bolt and M. E. Sumner, and A. Kamphorst, “A Study of the Equilibria between Three Categories of Potassium in an Illitic Soil,” Soil Sci. Soc. Am. J. 27(3), 294–299 (1963).

    Google Scholar 

  9. E. Brouwer, B. Baeyens, A. Maes, and A. Cremers, “Cesium and Rubidium Ion Equilibria in Illite Clay,” J. Physic. Chem. 87, 1213–1219 (1983).

    Article  Google Scholar 

  10. R. N. Comans, M. Haller, and P. De Preter, “Sorption of Cesium on Illite: Non-Equilibrium Behavior and Reversibility,” Geochim. Cosmochim. Acta 55, 443–440 (1991).

    Article  Google Scholar 

  11. A. Cremers, A. Elsen, P. De Preter, and A. Maes, “Quantitative Analysis of Radiocesium Retention in Soils,” Nature 335(6187), 247–249 (1988).

    Article  Google Scholar 

  12. A. Cremers and J. Pleysier, “Adsorption of the Silver-Thiourea Complex in Montmorillonite,” Nature 243, 86–87 (1973).

    Google Scholar 

  13. K. Harmsen, “Physicochemical Models,” in Soil Chemistry, Ed. by G. H. Bolt (Elsevier, Amsterdam, 1979).

    Google Scholar 

  14. M. D. Heilman, D. L. Carter, and C. L. Gonzalez, “The Ethylene Glycol Monoethyl Ether (EGME) Technique for Determining Soil-Surface Area,” Soil Sci. 100(6), 409–413 (1965).

    Article  Google Scholar 

  15. A. B. Hird, D. L. Rimmer, and F. L. Livens, “Factors Affecting the Sorption and Fixation of Cesium in Acid Organic Soil,” European Soil Sci. 47, 97–104 (1996).

    Article  Google Scholar 

  16. A. B. Hird, D. L. Rimmer, and F. L. Livens, “Total Cesium-Fixing Potential of Acid Organic Soils,” J. Environ. Radioact. 26, 103–118 (1995).

    Article  Google Scholar 

  17. H. E. Jensen, “Selectivity Coefficients of Mixtures of Ideal Cation Exchangers,” Agrochimica 19(3–4), 257–261 (1975).

    Google Scholar 

  18. A. V. Konoplev, R. Avila, A. A. Bulgakov, et al., “Quantitative Assessment of Radiocesium Bioavailability in Forest Soils,” Radiochim. Acta 88(9–11), 789–792 (2000).

    Article  Google Scholar 

  19. F. R. Livens and H. J. Loveland, “The Influence of Soil Properties on the Environmental Mobility of Cesium in Cumbria,” Soil Use Manag. 4(3), 69–75 (1988).

    Article  Google Scholar 

  20. M. C. Roca, V. R. Vallejo, M. Roig, et al., “Prediction of Cesium-134 and Strontium-85 Crop Uptake Based on Soil Properties,” J Environ. Qual. 26(5), 1354–1362 (1997).

    Google Scholar 

  21. Y. T. Sauras, V. R. Vallejo, E. Valcke, et al., “137Cs and 90Sr Root Uptake Prediction under Close-to-Real Controlled Conditions,” J. Environ. Radioact. 45(2), 191–217 (1999).

    Article  Google Scholar 

  22. B. L. Sawhney, “Selective Sorption and Fixation of Cations by Clay Minerals: a Review,” Clays Clay Miner. 20, 93–100 (1972).

    Article  Google Scholar 

  23. R. K. Schulz, R. Overstreet, and I. Barshad, “On the Soil Chemistry of Cesium-137,” Soil Sci. 85(1), 16–27 (1960).

    Google Scholar 

  24. G. Shaw and J. N. B. Bell, “Competitive Effects of Potassium and Ammonium on Cesium Uptake Kinetics in Wheat,” J. Environ. Radioact. 13, 283–296 (1991).

    Article  Google Scholar 

  25. E. Smolders, K. Brande, and R. Merckx, “Concentrations of 137Cs and K in Soil Solution Predict the Plant Availability of 137Cs in Soils,” Environ. Sci. Technol. 31(12), 3432–3438 (1997).

    Article  Google Scholar 

  26. T. Tamura and D. G. Jacobs, “Structural Implications in Cesium Sorption,” Health Phys. 2, 391–398 (1960).

    Article  Google Scholar 

  27. E. Valcke, B. Engels, and A. Cremers, “The Use of Zeolites as Amendments in Radiocesium-and Radiostrontium-Contaminated Soils: A Soil Chemical Approach. Part I: Cs-K Exchange in Clinoptilolite and Mordenite,” Appl. Spectr. 18, 205–211 (1997).

    Google Scholar 

  28. E. Valcke, M. Vidal, A. Cremers, et al., “The Use of Zeolites as Amendments in Radiocesium-and Radiostrontium-Contaminated Soils: A Soil Chemical Approach. Part III: A Soil-Chemical Test to Predict the Potential Effectiveness of Zeolite Amendments,” Appl. Spectr. 18, 218–224 (1997).

    Google Scholar 

  29. J. Wauters, L. Sweeck, E. Valcke, et al., “Availability of Radiocesium in Soils: a New Methodology,” Sci. Total Environ. 157, 239–248 (1994).

    Article  Google Scholar 

  30. J. Wauters, B. Vidal, A. Elsen, and A. Cremers, “Prediction of Solid-Liquid Distribution Coefficients of Radiocesium in Soils and Sediments. Part II: A New Procedure for Solid Phase Speciation of Radiocesium,” Appl. Geochem. 11, 595–604 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kruglov.

Additional information

Original Russian Text © S.V. Kruglov, V.S. Anisimov, L.N. Anisimova, R.M. Aleksakhin, 2008, published in Pochvovedenie, 2008, No. 6, pp. 693–703.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglov, S.V., Anisimov, V.S., Anisimova, L.N. et al. Specific 137Cs-sorption capacity parameters of soils and mineral sorbents. Eurasian Soil Sc. 41, 608–617 (2008). https://doi.org/10.1134/S1064229308060057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229308060057

Keywords

Navigation