Skip to main content
Log in

The influence of heating on organic matter of forest litters and soils under experimental conditions

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The specific features of changes in the content and mobility of organic matter in litters and cryogenic soils under heating were revealed. The thermal stability of the organic matter and litters is different. In the soils, the maximal loss of matter was recorded at a temperature of 300°C. In the litters, the maximal losses were found at 300, 400 and 550°C and depended inversely on the carbon content in them. The heating to 200°C caused insignificant changes in the mass of the litters and soils but increased the content of the water-soluble fraction of organic matter and the concentration of the water-soluble mineral nitrogen forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Abaimov, S. G. Prokushkin, O. A. Zyryanova, et al., “Ecological and Forest-Forming Role of Fires in the Cryolithozone of Siberia,” Lesovedenie, No. 5, 50–59 (2001).

  2. A. P. Abaimov, S. G. Prokushkin, V. G. Sukhovol’skii, and T. M. Ovchinnikova, “Estimation and Prediction of the Postpyrogenic State of Dahurian Larch on Cryogenic Soils of the Middle Siberia,” Lesovedenie, No. 2, 3–11 (2004).

  3. Yu. I. Ershov, “Pedogenesis in the Middle-Siberian Plateau,” Pochvovedenie, No. 7, 805–810 (1995).

  4. Yu. I. Ershov, “Mesomorphic Pedogenesis in the Semihumid Cryogenic Taiga Region of the Middle Siberia,” Pochvovedenie, No. 10, 10–18 (1994).

  5. E. V. Konev, Physical Principles of Plant Material Combustion (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  6. V. M. Korsunov and V. M. Chirkova, “Specific Features of Humus in Cryogenic Soils of the Transbaikal Region,” Pochvovedenie, No. 3, 301–307 (2003) [Eur. Soil Sci. 36 (3), 277–282 (2003)].

  7. K. P. Kutsenogii, O. V. Chankina, G. A. Koval’skaya, et al., “Postpyrogenic Changes in the Elemental Compositions of Forest Combustible Materials and Soils in Pine Forests of the Middle Siberia,” Sib. Ekol. Zh., No. 6, 735–742 (2003).

  8. S. G. Prokushkin, A. P. Abaimov, and A. S. Prokushkin, “Temperature Regime in Larch Forests on Cryogenic Soils,” in Forest Ecosystems of the Yenisei Meridian (Russ. Akad. Nauk, Novosibirsk, 2002), pp. 288–299 [in Russian].

    Google Scholar 

  9. S. G. Prokushkin, A. P. Abaimov, A. S. Prokushkin, and L. N. Kaverzina, “Nitrogen Nutrition of Larch Forests on Cryogenic Soils,” in Forest Ecosystems of the Yenisei Meridian (Russ. Akad. Nauk, Novosibirsk, 2002), pp. 288–299 [in Russian].

    Google Scholar 

  10. E. G. Savchenko, “The Impact of Soil Drying and Heating on the Mobility of Nutrients,” Pochvovedenie, No. 3, 322–331 (2004) [Eur. Soil Sci. 37 (3), 276–284 (2004)].

  11. N. D. Sorokin and S. Yu. Evgrafova, “Biological Activity of Forest Cryogenic Soils in Central Evenkia,” Pochvovedenie, No. 5, 634–638 (1999) [Eur. Soil Sci. 32 (5), 578–782 (1999)].

  12. M. A. Sofronov and A. V. Volokitina, “Plant Fires in the Zone of Northern Thin Forests,” Sib. Ekol. Zh., No. 1, 43–50 (1996).

  13. G. Almendros, F. J. Gonzalez-Vila, and F. Martin, “Fire-Induced Transformation of Soil Organic Matter from an Oak Forest: An Experimental Approach to the Effects of Fire on Humic Substances,” Soil Sci. 149, 158–168 (1990).

    Article  Google Scholar 

  14. J. M. Arocena and C. Opio, “Prescribed Fire-Induced Changes in Properties of Sub-Boreal Forest Soils,” Geoderma 113, 1–16 (2003).

    Article  Google Scholar 

  15. D. Badia and C. Marti, “Plant Ash and Heat Intensity Effects on Chemical and Physical Properties of Two Contrasting Soils,” Arid Land Res. Manage. 17(1), 23–41 (2003).

    Article  Google Scholar 

  16. G. Certini, “Effects of Fire on Properties of Forest Soils: a Review,” Oecologia 143, 1–10 (2005).

    Article  Google Scholar 

  17. U. Choromanska and T. H. DeLuca, “Microbial Activity and Nitrogen Mineralization in Forest Mineral Soils Following Heating: Evaluation of Post-Fire Effects,” Soil Biol. Biochem. 34, 263–271 (2002).

    Article  Google Scholar 

  18. S. G. Conard and G. A. Ivanova, “Wildfire in Russian Boreal Forests: Potential Impacts of Fire Regime Characteristics on Emissions and Global Carbon Balance Estimates,” For. Ecol. Manage. 121(3), 227–237 (1999).

    Article  Google Scholar 

  19. W. W. Covington and S. S. Sackett, “Soil Mineral Nitrogen Changes Following Prescribed Burning in Ponderosa Pine,” For. Ecol. Manage. 54, 175–191 (1992).

    Article  Google Scholar 

  20. L. F. DeBano, “The Role of Fire and Soil Heating on Water Repellence in Wildland Environments: a Review,” J. Hydrol. 231, 195–206 (2000).

    Article  Google Scholar 

  21. World Reference Base for Soil Resources (FAO, Rome, 1998).

  22. I. Fernandez, A. Cabainero, and T. Carballas, “Organic Matter Changes Immediately after a Wildfire in an Atlantic Forest Soil and Comparison with Laboratory Soil Heating,” Soil Biol. Biochem., 29, 1–11 (1997).

    Article  Google Scholar 

  23. I. Fernandez, A. Cabaneiro, and T. Carballas, “Thermal Resistance to High Temperatures of Different Organic Fractions from Soils under Pine Forests,” Geoderma 104(3–4), 281–298 (2001).

    Article  Google Scholar 

  24. E. Gimeno-Garcia, V. Andreu, and J. L. Rubio, “Changes in Organic Matter, Nitrogen, Phosphorus, and Cations in Soil as a Result of Fire and Water Erosion in a Mediterranean Landscape,” Eur. J. Soil Sci. 51(2), 201–210 (2000).

    Article  Google Scholar 

  25. G. Giovannini, S. Lucchesi, and M. Giachetti, “Effects of Heating on Some Physical and Chemical Parameters Related to Soil Aggregation and Erodibility,” Soil Sci. 146, 255–261 (1988).

    Article  Google Scholar 

  26. G. Gleixner, C. J. Czimczik, C. Kramer, et al., “Plant Compounds and Their Turnover and Stability as Soil Organic Matter,” in Global Biogeochemical Cycles in the Climate System, Ed. by E.-D. Schulze, M. Heiman, S. Harrison, et al. (Academic, San Diego, 2001), pp. 201–215.

    Google Scholar 

  27. J. A. Gonzalez-Perez, F. J. Gonzalez-Vila, G. Almendros, and H. Knicker, “The Effect of Fire on Soil Organic Matter: a Review,” Environ. Int. 30(6), 855–870 (2004).

    Article  Google Scholar 

  28. J. W. Harden, K. P. O’Neil, S. E. Trumbore, et al., “Moss and Soil Contributions to the Annual Net Carbon Flux,” J. Geophys. Res. 102(D24), 28805–28816 (1997).

    Article  Google Scholar 

  29. P. G. Jarvis, B. Saugier, and E.-D. Schulze, “Productivity of Boreal Forests,” in Terrestrial Global Productivity: Past, Present, and Future, Ed. by J. Roy, V. Saugier, H. A. Mooney (Academic, San Diego, 1999), pp. 211–244.

    Google Scholar 

  30. P. K. Khanna, R. J. Raison, and R. A. Falkiner, “Chemical Properties of Ash Derived from Eucaliptus Litter and Its Effects on Forest Soils,” For. Ecol. Manage. 66, 107–125 (1994).

    Article  Google Scholar 

  31. H. Knicker, G. Almendros, F. J. Gonzalez-Vila, et al., “C-13-and N-15-NMR Spectroscopic Examination of the Transformation of Organic Nitrogen in Plant Biomass during Thermal Treatment,” Soil Biol. Biochem. 28(8), 1053–1060 (1996).

    Article  Google Scholar 

  32. A. Prieto-Fernandez, M. Carballas, and T. Carballas, “Inorganic and Organic N Pools in Soils Burned or Heated: Immediate Alterations and Evolution after Forest Wildfires,” Geoderma 121(3–4), 291–306 (2004).

    Article  Google Scholar 

  33. J. Saldago, M. M. Mato, A. Vazquez-Galinanes, et al., “Comparison of Two Calorimetric Methods to Determine the Loss of Organic Matter in Galician Soils (NW Spain) Due to Forest Wildfires,” Thermochim. Acta 410, 141–148 (2004).

    Article  Google Scholar 

  34. H. Shibata, K. C. Petrone, L. D. Hinzman, and R. D. Boone, “Effect of Fire on Dissolved Organic Carbon and Inorganic Solutes in Spruce Forest in the Permafrost Region of Interior Alaska,” Soil Sci. Plant Nutr. 49(1), 25–29 (2003).

    Google Scholar 

  35. A. J. Soja, W. R. Cofer, H. H. Shugart, et al., “Estimating Fire Emissions and Disparities in Boreal Siberia (1998–2002),” J. Geophys. Res.-Atm. 109(D14), D14S06 (2004).

    Article  Google Scholar 

  36. C. J. Weston and P. M. Attwill, “Effects of Fire and Harvesting on Nitrogen Transformations and Ionic Mobility in Soils of Eucaliptus regnans Forests of South-Eastern Australia,” Oecologia, 83, 20–26 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Prokushkin, I.V. Tokareva, 2007, published in Pochvovedenie, 2007, No. 6, pp. 698–706.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokushkin, A.S., Tokareva, I.V. The influence of heating on organic matter of forest litters and soils under experimental conditions. Eurasian Soil Sc. 40, 628–635 (2007). https://doi.org/10.1134/S106422930706004X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422930706004X

Keywords

Navigation