Skip to main content
Log in

Analysis of the dynamics of plant residue mineralization and humification in soil

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The quantitative aspects of mineralization and humification of organic residues in soil were analyzed on the basis of the experimental curves of their transformation and using three conceptual approaches. Ågren’s and Bosatta’s concept of the continuum of substrate quality loss accentuates the gradual reduction of the availability of the decomposable material for microorganisms. The discrete succession concept emphasizes the existence of morphologically and biochemically distinguishable stages (a fraction cascade) of transforming the organic debris into humus. According to the biochemical concept, the organic debris transformation is represented as the mineralization of individual organic substances with different rates, more often without taking into account the influence of humus formation. The testing of these concepts led to the conclusion that the discrete succession and biochemical concepts should be integrated for the elaboration of the theoretical basis for assessing the rate of organic debris transformation in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, “Humus Formation Processes in the Soil,” Zap. Leningr. S-Kh. Inst. 142, 26–82 (1970).

    Google Scholar 

  2. L. N. Aleksandrova, Soil Organic Matter and Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  3. L. N. Aleksandrova and M. F. Lyuzhin, “Effect of Transformation Conditions on the Ratio of Mineralization and Humification of Plant Residues,” Zap. Leningr. S-Kh. Inst. 105, 19–28 (1966).

    Google Scholar 

  4. T. V. Aristovskaya, Microbiology of Pedogenesis (Nauka, Leningrad) [in Russian]. 1980.

    Google Scholar 

  5. N. F. Ganzhara, N. L. Smolentseva, and A. V. Shevchenko, “Qualitative Composition of Humus Resulting from Different Plant Residues,” Izv. Timiryazevsk. S-Kh. Akad., No. 16, 170–173 (1979).

  6. T. G. Gil’manov, “Mathematical Model of Humus Accumulation in Steppe Soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 10, 78–84 (1975).

  7. L.A. Grishina and G. N. Fomina, “Mineralization and Humification of Plant Residues in the Primary Forests and Agrocenoses of the Valdai,” in Soils and Productivity of Plant Communities (Mosc. Gos. Univ., Moscow, 1981), pp. 143–160 [in Russian].

    Google Scholar 

  8. M. I. Dergacheva, Soil Organic Matter: Statics and Dynamics (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  9. M. I. Dergacheva, System of Soil Humic Substances (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  10. “Reaction Kinetics in Solutions: Experimental Methods of Determining the Rate and Order of Reactions,” in Laboratory Manual of Physical Chemistry, Ed. by N. V. Kudryashov (Vysshaya Shkola, Moscow, 1986), pp. 328–332 [in Russian].

  11. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  12. M. M. Kononova, Soil Organic Matter: Nature, Properties, and Methods of Study (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  13. M. M. Kononova, Problem of Soil Humus and Current Problems in Its Study (Akad. Nauk SSSR, Moscow, 1951) [in Russian].

    Google Scholar 

  14. M. A. Nadporozhskaya, Extended Abstract of Candidate’s Dissertation in Agriculture (St. Petersburg, 2000).

  15. M. A. Nadporozhskaya, O. G. Chertov, and N. V. Kovsh, “Effect of Abiogenic Factors on the Transformation of Plant Residues,” in Humus and Pedogenesis: Proceedings of the St. Petersburg State Agrarian University (St.-Petersburg, 2003), pp. 81–88 [in Russian].

  16. M. A. Nadporozhskaya, O. G. Chertov, and N. V. Kovsh, “Comparative Dynamics of Nitrogen and Carbon Losses during the Transformation of Organic Matter in Model Laboratory Experiments,” in Humus and Pedogenesis: Proceedings of the St. Petersburg State Agrarian University (St. Petersburg, 2000), pp. 15–30 [in Russian].

  17. M. A. Nadporozhskaya, L. B. L’vova, and N. V. Kovsh, “Transformation of Nitrogen Compounds at the Initial Transformation Stages of Plant Residues,” in Humus and Pedogenesis: Proceedings of the St. Petersburg State Agrarian University (St. Petersburg, 2003), pp. 89–97 [in Russian].

  18. D. S. Orlov, Soil Humus Acids and the General Theory of Humification (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  19. D. S. Orlov, Soil Chemistry (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  20. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  21. V.V. Ponomareva, Theory of Podzolization (Akad. Nauk SSSR, Moscow, 1964) [in Russian].

    Google Scholar 

  22. V.V. Ponomareva and T. A. Plotnikova, Humus and Pedogenesis (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  23. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, et al., Simulation of Soil Organic Matter Dynamics (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  24. S. Ya. Trofimov, P. Botner, and M. M. Kutu, “Decomposition of Organic Matter in Organic Horizons of Forest Soils in Laboratory Conditions,” Pochvovedenie, No. 12, 1480–1488 (1998) [Eur. Soil Sci. 31 (12), 1349–1357 (1998)].

  25. Carbon in Ecosystems of Russian Forests and Bogs, Ed. by V. A. Alekseev and R. A. Berdsi (Krasnoyarsk, 1994) [in Russian].

  26. O. G. Chertov, “Simulation Model of the Mineralization and Humification of Forest Falloff and Litter,” Zh. Obshch. Biol. 46(66), 794–804 (1985).

    Google Scholar 

  27. O. G. Chertov and G. P. Men’shikova, “Rate of Destruction Processes in Pistaccio Forests of Badkhyz,” in Pistaccio Forests of Badkhyz, Ed. by R. V. Kamelin and L. E. Rodin (Nauka, Leningrad, 1989), pp. 214–221 [in Russian].

    Google Scholar 

  28. O. G. Chertov, S. N. Chukov, M. A. Nadporozhskaya, et al., “Method of Studying the Functional-Dynamic Characteristics of Soil Organic Matter Transformation,” Vestn. St.-Peterb. Univ., Ser. 3: Biol. 3(17), 106–110 (1994).

    Google Scholar 

  29. G. Ågren and E. Bosatta, Theoretical Ecosystem Ecology: Understanding Element Cycling (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  30. B. Berg, C. McClaugherty, A. Virzo De Santo, et al., “Decomposition and Soil Organic Matter — Can We Distinguish a Mechanism for Soil Organic Matter Buildup?” J. Forest Res. 10, 108–119 (1995).

    Google Scholar 

  31. O. G. Chertov and A. S. Komarov, “SOMM — a Model of Soil Organic Matter Dynamics,” Ecol. Model. 94, 177–189 (1997).

    Article  Google Scholar 

  32. O. G. Chertov, A. S. Komarov, and G. P. Karev, Modern Approaches in Forest Ecosystem Modeling (Leiden, Brill, 1999).

    Google Scholar 

  33. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, et al., “ROMUL: a Model of Forest Soil Organic Matter Dynamics as a Substantial Tool for Forest Ecosystem Modeling,” Ecol. Model. 138(1–3), 289–308 (2001).

    Article  Google Scholar 

  34. S. Kellomäki, H. Väisänen, H. Hänninen, et al., “SIMA: a Model for Forest Succession Based on the Carbon and Nitrogen Cycles with Application to Silvicultural Management of the Forest Ecosystem,” Silva Carelica 22 (1992).

  35. Ya. Kuzyakov, “Review: Factors Affecting Rhizosphere Priming Effects,” Plant Nutr. Sci. Soil 165, 382–396 (2002).

    Article  Google Scholar 

  36. J. P. Martin, H. Zunino, P. Peirano, et al., “Decompostion of 14C Labeled Lignins, Model Humic Acid Polymers, and Fungal Melanins in Allophanic Soils,” Soil Biol. Biochem. 14, 289–293 (1982).

    Article  Google Scholar 

  37. V. Meentmeyer, “An Approach to the Biometeorology of Decomposer Organisms,” Int. J. Biometeorol. 22, 94–102 (1978).

    Article  Google Scholar 

  38. P. Mikola, “Experiments on the Rate of Decomposition of Forest Litter,” Comm. Inst. Forest. Fenniae, No. 43, 1–50 (1954).

  39. G. Mindermann, “Addition, Decomposition and Accumulation of Organic Matter in Forests,” J. Ecol. 56, 355–362 (1968).

    Article  Google Scholar 

  40. K. Nakane, “A Mathematical Model of the Behavior and Vertical Distribution of Organic Carbon in Forest Soils: II. A Revised Model Taking the Supply of Root Litter into Consideration,” Jpn. J. Ecol. 28, 169–177 (1978).

    Google Scholar 

  41. D. W. Nelson, J. P. Martin, and J. O. Ervin, “Decomposition of Microbial Cells and Components in Soil and Their Stabilization through Complexing with Model Humic Acid-Type Phenolic Polymers,” Soil Sci. Soc. Am. J. 43, 84–88 (1979).

    Google Scholar 

  42. J. S. Olson, “Energy Storage and Balance of Producers and Decomposers in Ecological Systems,” Ecology 44, 322–331 (1963).

    Article  Google Scholar 

  43. J. Pastor and W. M. Post, Development of a Linked Forest Productivity — Soil Process Model, Oak Ridge National Laboratory ORNL/TM-9519, 1985.

  44. Evaluation of Soil Organic Matter Models, Ed. by D. S. Powlson, P. Smith, and J. Smith, NATO ASI Series, I 38 (Springer Berlin, 1996).

    Google Scholar 

  45. Z. Prusinkiewicz, “Application of the Mathematical Model of Organic Matter Accumulation and Decomposition for Comparative Study of Various Forest Floor Types,” Ekol. Pol. 26, 343–357 (1977).

    Google Scholar 

  46. Ph. Sollins, P. Homann, and B. A. Caldwell, “Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls,” Geoderma 74, 65–165 (1996).

    Article  Google Scholar 

  47. M. J. Swift, O. W. Heal, and J. M. Anderson, Decomposition in Terrestrial Ecosystems Blackwell Sci. Publ., (Oxford, 1979).

  48. J. A. van Veen and E. A. Paul, “Organic Carbon Dynamics in Grassland Soil: I. Background Information and Computer Simulation,” Can. J. Soil Sci. 61(2), 185–201 (1981).

    Google Scholar 

  49. L. Verma and J. P. Martin, “Decomposition of Algal Cells and Components and Their Stabilization through Complexing with Model Humic Acid-Type Phenolic Polymers,” Soil Biol. Biochem. 8, 85–90 (1976).

    Article  Google Scholar 

  50. C. Walse, Ç. Berg, and H. Sverdrup, “Review and Synthesis of Experimental Data on Organic Matter Decomposition with Respect to the Effect of Temperature, Moisture, and Acidity,” Environ. Rev. 6, 25–40 (1998).

    Article  Google Scholar 

  51. S. A. Waxman and F. C. Geretsen, “Influence of Temperature and Moisture upon the Nature and Extent of Decomposition of Plant Residues by Microorganisms,” Ecology 121, 33–36 (1931).

    Google Scholar 

  52. S. A. Waxman and F. G. Tenney, “The Composition of Natural Organic Materials and Their Decomposition in the Soil,” Soil Sci. 24(2), 317–324 (1927).

    Google Scholar 

  53. H. Zunino, F. Borie, S. Aguilera, et al., “Decomposition of 14C Labeled Glucose, Plant, and Microbial Products and Phenols in Volcanic Ash-Derived Soils of Chile,” Soil Biol. Biochem. 14, 37–43 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.G. Chertov, A.S. Komarov, M.A. Nadporozhskaya, 2007, published in Pochvovedenie, 2007, No. 2, pp. 160–169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertov, O.G., Komarov, A.S. & Nadporozhskaya, M.A. Analysis of the dynamics of plant residue mineralization and humification in soil. Eurasian Soil Sc. 40, 140–148 (2007). https://doi.org/10.1134/S1064229307020032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229307020032

Keywords

Navigation