Skip to main content
Log in

Simulation of Doppler Frequency Shift in the Presence of Traveling Ionospheric Disturbances

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Mathematical modeling of the propagation of radio waves in the decameter range between the transmitter and receiver on inclined paths during the formation of traveling ionospheric disturbances (TID) has been carried out. The features of propagation when moving TIDs in both horizontal and vertical directions were studied. The characteristics of the radio channel: the group delay time of the radio signal, the Doppler frequency shift, the dependence of the ray exit angles on the position of the TID center at various frequencies and types of polarization of electromagnetic waves are calculated. It has been established that when the inhomogeneity moves horizontally, the center of the Doppler shift curve (zero value) move depending on the type of polarization of the radiation. The shape of the Doppler shift curve changes from a sinusoidal shape to a sawtooth with increasing frequency, the group delay curve has a minimum in the region of influence of the TID, and the region of influence of the disturbance itself significantly exceeds its characteristic size. With vertical movement, a three-ray region is formed, characterized by increased values of the Doppler frequency shift and group delay times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. V. I. Kurkin, I. V. Medvedeva, A. V. Podlesny, Z. F. Dumbrava, and I. N. Poddelsky, in Modern Problems of Remote Sensing, Radar, Wave Propagation and Diffraction (Armand Readings): Proc. All-Russia Open Sci. Conf., Murom, 2022, pp. 27–35.

  2. D. S. Lukin and V. A. Shkolnikov, Kosm. Issled. 6, 389–394 (1968).

    Google Scholar 

  3. D. S. Lukin and V. A. Shkolnikov, Kosm. Issled. 10, 66–72 (1972).

    Google Scholar 

  4. D. S. Lukin, P. G. Zaets, S. A. Makalsky, Yu. V. Cheshev, V. A. Shkolnikov, and E. A. Palkin, in Proc. 13th All-Union Conf. on Radio Wave Propagation, Gorky, June 19–20, 1981 (Nauka, Moscow, 1981), Vol. 1, pp. 49–52.

  5. P. G. Zaets, E. B. Ipatov, D. S. Lukin, S. A. Makalsky, E. A. Palkin, Yu. V. Cheshev, and V. A. Shkolnikov, in Proc. 13th All-Union Conf. on Radio Wave Propagation, Gorky, June 19–20, 1981 (Nauka, Moscow, 1981), Vol. 1, pp. 238–240.

  6. P. P. Guzminov, P. G. Zaets, D. S. Lukin, E. A. Palkin, and Yu. V. Cheshev, in Propagation and Diffraction of Waves in Inhomogeneous Media (Mosk. Fiz.-Tekh. Inst., Moscow, 1989), pp. 15–23 [in Russian].

    Google Scholar 

  7. A. S. Kryukovskii, D. S. Lukin, D. V. Rastyagaev, and Yu. I. Skvortsova, T-Comm: Telecommun. Transp. 9 (9), 40–47 (2015).

    Google Scholar 

  8. A. S. Kryukovskii and Yu. I. Skvortsova, Vestn. Ros. Nov. Univ., Ser.: Upr. Vychisl. Tekh. Inf., No. 1–2, 34–40 (2016).

  9. A. S. Kryukovskii and Yu. I. Skvortsova, Russ. Fiz. Zh. 59 (12-3), 131–135 (2016).

  10. V. A. Ivanov, D. V. Ivanov, N. V. Ryabova, A. R. La-shchevsky, R. R. Belgibaev, A. A. Elsukov, A. V. Mal-tsev, V. V. Pavlov, M. I. Ryabova, and A. A. Chernov, Byull. Povolzh. Gos. Tekh. Univ., Ser.: Radiotekh. Infokommun. Sist., No. 2(12), 15–23 (2011).

  11. V. A. Ivanov, D. V. Ivanov, and N. V. Ryabova, Byull. Povolzh. Gos. Tekh. Univ., Ser.: Radiotekh. Infokommun. Sist., No. 1(8), 3–37 (2010).

  12. D. V. Ivanov, Methods and Mathematical Models for Studying the Propagation of Complex Decameter Signals in the Ionosphere and Correcting their Dispersion Distortions. Monograph (Mari Gos. Tekh. Univ., Yoshkar-Ola, 2006) [in Russian].

    Google Scholar 

  13. G. G. Vertogradov, V. P. Uryadov, and F. I. Vybornov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61, 462–473 (2018).

    Google Scholar 

  14. A. V. Sofin, in Int. Baikal Youth Sci. School on Fundamental Physics: Proc. 17 Conf. of Young Scientists, Irkutsk, 2022, pp. 406–408.

  15. A. V. Sofin and V. I. Kurkin, in Propagation of Radio Waves: Proc. 27 All-Russia Open Sci. Conf., Kaliningrad, Russia, June 28–July 3, 2021 (Balt. Fed. Univ. im. I. Kanta, Kaliningrad, 2021), pp. 358–363.

  16. Sir W. R. Hamilton, On a General Method of Expressing the Paths of Light, & of the Planets, by the Coefficients of a Characteristic Function (P. D. Hardy, 1833).

    Google Scholar 

  17. A. N. Kazantsev, D. S. Lukin, and Yu. G. Spiridonov, Kosm. Issled. 5, 593–600 (1967).

    Google Scholar 

  18. A. S. Kryukovskii, D. S. Lukin, and K. S. Kiryanova, J. Commun. Technol. Electron. 57, 1039–1045 (2012).

    Article  Google Scholar 

  19. K. Davies, Ionospheric Radio Waves (Blaisdell, Waltham, Mass., 1969; Mir, Moscow, 1973).

  20. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, 2nd ed. (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  21. Yu. I. Bova, A. S. Kryukovsky, and D. S. Lukin, J. Commun. Technol. Electron. 64 (1), 1–12 (2019).

    Article  Google Scholar 

  22. A. S. Kryukovskii, D. V. Rastyagaev, and Yu. I. Skvortsova, Vestn. Ross. Nov. Univ., Ser.: Upr. Vychisl. Tekh. Inf., No. 4, 47–52 (2013).

  23. H. Whitney, Ann. Math. 62, 374–410 (1955).

    Article  MathSciNet  Google Scholar 

  24. A. S. Kryukovskii, D. S. Lukin, and E. A. Palkin, Radiophys. Quantum Electron. 29, 67–75 (1986).

    Article  ADS  Google Scholar 

  25. E. V. Mikhaleva, A. S. Kryukovsky, and D. V. Rastyagaev, in Modern Problems of Remote Sensing, Radar, Wave Propagation and Diffraction (Armand Readings): Proc. All-Russia Open Sci. Conf., Murom, June 27–29, 2023 (Murom Inst., Fil. Vladimir. Gos. Univ. im. A. G. i N. G. Stoletov, Murom, 2023), pp. 48–54.

  26. E. V. Mikhaleva, A. S. Kryukovsky, D. S. Lukin, and D. V. Rastyagaev, in Radio Wave Propagation: Proc. 28th All-Russia Open Sci. Conf., Yoshkar-Ola, May 16–19, 2023 (Povolzh. Gos. Tekhnol. Univ., Yoshkar-Ola, 2023), pp. 549–552.

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 20-12-00299-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kryukovsky or D. V. Rastyagaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaleva, E.V., Kryukovsky, A.S., Lukin, D.S. et al. Simulation of Doppler Frequency Shift in the Presence of Traveling Ionospheric Disturbances. J. Commun. Technol. Electron. 68 (Suppl 2), S111–S121 (2023). https://doi.org/10.1134/S1064226923140127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923140127

Keywords:

Navigation