Skip to main content
Log in

Mathematical Models of Modern Power Save Mechanisms in Wi-Fi Networks

  • DATA TRANSMISSION IN COMPUTER NETWORKS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The Wi-Fi standard describes a number of power save mechanisms, the main idea of which is to periodically turn off the radio to save energy on channel listening. In modern Wi-Fi networks, such mechanisms include Target Wake Time (TWT) and Wake-Up Radio (WUR). Despite the fundamental differences between these mechanisms, they both use the activity period scheduling alternating with long intervals of turning off the main radio. Turning off the main radio not only saves energy, but also causes the loss of synchronization between the clocks of the power-saving stations with the access point clock because of the clock drift effect, which can negatively affect the efficiency of these mechanisms. In this paper, mathematical models of frame transmission from an access point to power-saving stations using TWT and WUR have been developed. The models consider the clock drift effect and allow us to evaluate the efficiency of the considered mechanisms in terms of average power consumption and average frame delivery delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, IEEE Commun. Surv. Tutorials 21, 197–216 (2018).

    Article  Google Scholar 

  2. IEEE P802.11baTM Standard for Information Technology — Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks — Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 3: Wake-Up Radio Operation: 2021 (2021).

  3. C. Ghosh, Discussion on Deep and Shallow Sleep States (2015). http://mentor.ieee.org/802.11/dcn/15/11-15-1100-02-00ax-discassion-on-deep-and-shallow-sleepstates.pptx.

  4. E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, Comput. Commun. 58, 53–69 (2015).

    Article  Google Scholar 

  5. D. Bankov, E. Khorov, A. Lyakhov, and J. Famaey, Sensors 20, 2449 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. A. Kureev, D. Bankov, E. Khorov, and A. Lyakhov, in Proc. 2017 IEEE 28th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Quebec, Canada, Oct. 8–13, 2017 (IEEE, Piscataway, N. J., 2017).

  7. S. Baek and B. D. Choi, in Proc. 2008 Int. Conf. on Telecommunications, St. Petersburg, Russia, June 16–19, 2008 (IEEE, Piscataway, N. J., 2008).

  8. I. A. Ibrahim, H. TH. Salim, and H. F. Khazaal, Wasit J. Eng. Sci. 6, 13–19 (2018).

    Google Scholar 

  9. Y. He, R. Yuan, X. Ma, J. Li, and C. Wang, in Proc. 2007 IEEE Int. Conf. on Network Protocols, Beijing, China, Oct. 16–19, 2007 (IEEE, Piscataway, N.J., 2007), pp. 154–163.

  10. Y. Xie, X. Luo, and R. KC. Chang, in Proc. 2009 IEEE Sarnoff Symp, Princeton, N.J., Mar. 30–Apr. 1, 2009 (IEEE, Piscataway, N.J., 2009).

  11. X. Perez-Costa and D. Camps-Mur, IEEE Wireless Commun. 17, 88–96 (2010).

    Article  Google Scholar 

  12. D. Camps-Mur, M. D. Gomony, X. Pérez-Costa, and S. Sallent-Ribes, Comput. Networks 56, 2896–2911 (2012).

    Article  Google Scholar 

  13. A. Sidam, P. Koutarapu, M. Methuku, and S. Vuyyala, in Proc. 2022 9th Int. Conf. on Computing for Sustainable Global Development (INDIACom), New Delhi, India, Mar 23–25, 2022 (IEEE, Piscataway, N.J., 2022), pp. 551–555.

  14. V. Bhargava and N. Raghava, Electronics 11, 3914 (2022).

    Article  Google Scholar 

  15. E. Guérin, T. Begin, and I. G. Lassous, Comput. Commun. 203, 129–145 (2023).

  16. D. Bankov, E. Khorov, A. Lyakhov, and E. Stepanova, in Proc. 2019 IEEE Int. Black Sea Conf. on Communications and Networking (BlackSeaCom), Sochi, Russia, June 3–6, 2019 (IEEE, Piscataway, N.J., 2019).

  17. E. Stepanova, D. Bankov, E. Khorov, and A. Lyakhov, IEEE Access 8, 221061–221076 (2020).

    Article  Google Scholar 

  18. S. Santi, L. Tian, and J. Famaey, in Proc. 2019 Workshop on Next-Generation Wireless with ns-3, Florence, Italy, June 21, 2019 (Association for Computing Machinery, New York, 2019), pp. 9–12.

  19. S. Santi, L. Tian, E. Khorov, and J. Famaey, Sensors 19, 2614 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. D. Bankov, E. Khorov, A. Lyakhov, and E. Stepanova, in Proc. 5th Int. Conf. on Engineering and Telecommunication (EnT-MIPT), Moscow, Russia, Nov. 15–16, 2018 (IEEE Computer Society, Los Alamitos, Calif., 2018).

  21. T. L. Kao, H. C. Wang, C. H. Lu, and T. H. Cheng, IOP Conf. Ser.: Mater. Sci. Eng. 644, 012008 (2019).

  22. M. Nurchis and B. Bellalta, IEEE Wireless Commun. 26, 142–150 (2019).

    Article  Google Scholar 

  23. Q. Chen, Z. Weng, and G. Chen, IEEE Access 7, 158207–158222 (2019).

    Google Scholar 

  24. Q. Chen, IEEE Internet Things J. 9, 18973–18986 (2022).

    Article  Google Scholar 

  25. M. Karaca, Turk. J. Electr. Eng. Comput. Sci. 29 (3), 1659–1671 (2021).

    Article  Google Scholar 

  26. C. Yang, J. Lee, and S. Bahk, in Proc. 2021 IEEE Wireless Commun. and Networking Conf. (WCNC), Nanjing, China, Mar. 29–Apr. 1, 2021 (IEEE, Piscataway, N.J., 2021).

  27. X. Jin, Y. Long, X. Fang, R. He, and H. Ju, in Proc. 2022 IEEE/CIC Int. Conf. on Communications in China (ICCC), Sanshui, Foshan, China, Aug. 11–13, 2022 (IEEE, Piscataway, N.J., 2022), pp. 1119–1124.

  28. J. Bai, H. Fang, J. Suh, O. Aboul-Magd, E. Au, and X. Wang, in Proc. 2018 IEEE/CIC Int. Conf. on Commun. in China (ICCC), Beijing, China, Aug. 16–18, 2018 (IEEE, Piscataway, N.J., 2018), pp. 34–39.

  29. Q. Chen and Y. H. Zhu, IEEE Trans. Wireless Commun. 20, 1529–1543 (2020).

    Article  Google Scholar 

  30. N. M. Pletcher, S. Gambini, and J. M. Rabaey, in Proc. 2008 IEEE Int. Solid-State Circuits Conf., San Francisco, Calif., Feb. 3–7, 2008 (IEEE, Piscataway, N.J., 2008), pp. 524–633.

  31. C. Hambeck, S. Mahlknecht, and T. Herndl, in Proc. 2011 IEEE Int. Symp. of Circuits and Systems (ISCAS), Rio de Janeiro, Brasil, May 15–18, 2011 (IEEE, Piscataway, N.J., 2011), pp. 534–537.

  32. C. Salazar, A. Kaiser, A. Cathelin, and J. Rabaey, in Proc. 2015 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Calif., Feb. 22–26, 2015 (IEEE, Piscataway, N.J., 2015).

  33. R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, IEEE Commun. Surv. Tutorials 19, 2117–2157 (2017).

    Article  Google Scholar 

  34. R. Liu, A. B. KT, R. Dorrance, D. Dasalukunte, M. A. Santana Lopez, V. Kristem, S. Azizi, M. Park, and B. R. Carlton, in Proc. 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, Mass., Aug. 28–30, 2019 (IEEE, Piscataway, N.J., 2019), pp. 255–258.

  35. R. Liu, A. B. KT, R. Dorrance, D. Dasalukunte, V. Kristem, M. A. Santana Lopez, A. W. Min, S. Azizi, M. Park, and B. R. Carlton, IEEE J. Solid-State Circuits 55, 1151–1164 (2019).

    Article  ADS  Google Scholar 

  36. D. J. Deng, S. Y. Lien, C. C. Lin, M. Gan, and H. C. Chen, IEEE Access 8, 141547–141557 (2020).

    Article  Google Scholar 

  37. T. Song and T. Kim, Sensors 19, 5106 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. A. A. Benbuk, N. Kouzayha, F. A. Asadallah, J. Costantine, and Z. Dawy, in Proc. 2019 IEEE Int. Symp. on Antennas and Propagation and USNC–URSI Radio Science Meeting, Atlanta, Ga., July 7–12, 2019 (IEEE, Piscataway, N.J., 2019), pp. 1461–1462.

  39. S. Tang and S. Obana, Wireless Commun. Mobile Comput. 2017, 2405381 (2017).

    Google Scholar 

  40. V. Rakovic, R. Adamovski, A. Risteski, and L. Gavrilovska, Wireless Pers. Commun. 126, 123–134 (2020).

    Article  Google Scholar 

  41. S. L. Sampayo, J. Montavont, F. Prégaldiny, and T. Noël, in Proc. 2018 14th Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob), Limassol, Cyprus, Oct. 15–17, 2018 (IEEE, Piscataway, N.J., 2018).

  42. G. Mahendra and T. J. Lee, IEEE Commun. Lett. 25, 3432–3436 (2021).

    Article  Google Scholar 

  43. H. Hong, Y. Kim, and R. Kim, Appl. Sci. 8, 72 (2018).

    Article  Google Scholar 

  44. E. A. Stepanova, D. V. Bankov, E. M. Khorov, and A. I. Lyakhov, Inf. Protsessy 22, 261–275 (2022).

    Google Scholar 

  45. V. Vishnevsky and A. Lyakhov, Cluster Comput. 5, 133–144 (2002).

    Article  Google Scholar 

  46. The ns-3 Network Simulator. http://www.nsnam.org/.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Bankov, A. I. Lyakhov, E. A. Stepanova or E. M. Khorov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankov, D.V., Lyakhov, A.I., Stepanova, E.A. et al. Mathematical Models of Modern Power Save Mechanisms in Wi-Fi Networks. J. Commun. Technol. Electron. 68 (Suppl 2), S224–S238 (2023). https://doi.org/10.1134/S106422692314005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692314005X

Keywords:

Navigation