Skip to main content
Log in

Binary Representation of Signal Constellations and its Use for Analyzing Modulated Signals

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

An analytical method is proposed for describing signal constellations in the form of a functional dependence on a multidimensional vector of binary variables. A transformation is given that allows one to move from the traditional tabular description of modulated signals to the proposed analytical description. The method makes it possible to more compactly describe signals modulated by digital information, especially with a high modulation order, and to identify some patterns in known modulation methods and extend them to higher order modulations. An analytical description of signal constellations makes it possible to synthesize new demodulation algorithms for various communication systems. Simple examples show the advantages of the proposed approach over traditional methods based on tabular representation of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. Here the symmetry property of the Hadamard matrix is taken into account, i.e., HT = H.

REFERENCES

  1. L. M. Fink, Discrete Communication Theory (Sovetskoe Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  2. J. G. Proakis, Digital Communication (McGraw-Hill, New York, 1989; Radio i Svyaz’, Moscow, 2000).

  3. L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding Turbo Equalisation and Space Time Coding for Transmission over Wireless Channels (Willy-IEEE, New York, 2002).

    Book  Google Scholar 

  4. L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (Willy-IEEE, New York, 2004).

    Google Scholar 

  5. D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  6. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N. J., 1988; Vil’yams, Moscow, 2003).

  7. V. I. Korzhik, L. M. Fink, and K. N. Shchelkunov, Calculation of Noise Stability of Transmission Systems of Discrete Messages. Reference Book, Ed. by L. M. Fink (Radio i Svyz’, Moscow, 1981) [in Russian].

    Google Scholar 

  8. C. Shannon, Bell Syst. Tech. J. 27 (4), 623 (1948).

    Article  Google Scholar 

  9. V. I. Zhuravlev and N. P. Trusevich, Methods of Modulation-Demodulation of Radio Signals in Transmission Systems of Digital Messages (MTUSI, Moscow, 2005) [in Russian].

    Google Scholar 

  10. C. M. Thomas, M. Y. Weidner, and S. H. Durrani, IEEE Trans. Commun. 22 (2), 168 (1974).

    Article  Google Scholar 

  11. R. P. F. Hoefel, in Proc. 2021 Int. Symp. on Networks, Computers and Communications (ISNCC), Dubai, Oct. 31–Nov. 02, 2021 (IEEE, New York, 2021), paper No. 9615831.

  12. E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, IEEE Commun. Surveys & Tutorials 21 (1), 197 (2019).

    Article  Google Scholar 

  13. L. Zhao, B. Sang, Yu. Tan, et al., IEEE Trans. IEEE Trans. Microwave Theory Tech. 70, 4211 (2022).

    Article  Google Scholar 

  14. LTE; Evolved Universal Terrestrial Radio Access (E‑UTRA); Physical channels and modulation (3GPP TS 36.211 version 14.2.0 Release 14) Sophia Antipolis (Europ. Telecommun. Statndard Inst., 2017). https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/14.02.00_ 60/ts_136211v140200p.pdf.

  15. M. G. Bakulin, Elektrosvyaz’, No. 1, 11 (2000).

  16. A. B. Sergienko, Digital Signal Processing (Piter, St. Petersburg, 2003) [in Russian].

  17. R. E. Blahut, Fast Algorithms for Digital Signal Processing (Wesley Publishing Company Reading, Ontario Sydney, 1985; Mir, Moscow, 1989).

  18. M. G. Bakulin, Radiotekh. Tetradi, No. 20, 19 (2000).

    Google Scholar 

  19. Digital cellular telecommunications system (Phase 2+); Modulation (3GPP TS 45.004 version 9.0.0 Release 9) Sophia Antipolis (Eur. Telecommun. Statndard Inst., 2010). http://www.etsi.org/deliver/etsi ts/145000 145099/145004/09.00.00 60/ts 145004v090000p.pdf.

  20. L. A. Zalmanzon, Fourier, Walsh, Haar’s Transformation and Their Application in Management, Communication and Other Areas (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  21. N. G. Dyadyunov and A. I. Senin, Orthogonal and Quasiorthogonal Signals, by Ed. E. M. Tarasenko (Svyaz’, Moscow, 1977). [in Russian].

  22. N. Ahmed, K. R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer-Verlag, Berlin, 1975; Svyaz’, Moscow, 1980).

  23. M. G. Bakulin, V. B. Kreindelin, and A. L. Terekhov, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 35, 23 (1992).

    Google Scholar 

  24. Presentation “1st 5G Algorithm Innovation Competition-ENV1.0-SCMA” (Altera Copr., San Jose, 2015). http://www.innovateasia.com/5g/images/pdf/1st%205 G%20Algorithm%20Innovation%20Competition-ENV 1.0%20-%20SCMA.pdf.

  25. E. Raeisidehkordi and H. Bakhshi, J. Commun. Technol. Electron 66 (1), 70 (2021).

    Article  Google Scholar 

  26. Sh. Qian, W. Ge, Yo. Zhang, and P. Zhang, IEICE Trans. on Commun. E105 B (7), 788 (2022). https://doi.org/10.1587/transcom.2021EBP3156

  27. T. Lei, Sh. Ni, N. Cheng, et al., IEEE Access. 10, 100987 (2022). https://doi.org/10.1109/ACCESS.2022.3207898

    Article  Google Scholar 

  28. M. Gao, W. Ge, P. Zhang, and Y. Zhang, IEEE Access 8, 211665 (2020). https://doi.org/10.1109/ACCESS.2020.3038192

    Article  Google Scholar 

Download references

Funding

The work was prepared on the basis of scientific research carried out with the financial support of the Ministry of Digital Development, Communications, and Mass Communications of the Russian Federation within the framework of the state contract dated 02.26.2021, no. P33-1-26/8, Development of New Non-Orthogonal Access Technology (NOMA) and its Use Together with MIMO Technology for Advanced 6G Communication Systems (code MIMO-NOMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kreindelin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, M.G., Ben Rejeb, T.B., Kreindelin, V.B. et al. Binary Representation of Signal Constellations and its Use for Analyzing Modulated Signals. J. Commun. Technol. Electron. 68 (Suppl 3), S284–S293 (2023). https://doi.org/10.1134/S1064226923120045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923120045

Navigation