Skip to main content
Log in

Magnetic Properties of Metal Dichalcogenide in the Frame of Heisenberg-Like Model: DFT and Monte-Carlo Methods

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

We study magnetism in the 2D magnets with a \(d\)-metal sub-lattice based on the density functional theory and Monte-Carlo simulations. The phenomena of ligand field and the macroscopic nature of \(p{\text{-}}d\) orbitals hybridization has been discussed widely. For a magnetism in the 2D materials with a honeycomb and hexagonal \(d\)-metal sub-latices we derive an effective Hamiltonian for a spin subsystem with and without inclusion next nearest-neighbors interaction and higher-order terms. Based on the proposed models critical temperature \({{T}_{{\text{C}}}}\) for a wide range of compounds estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, Di Xiao, P. Jarillo-Herrero, and X. Xu, “Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit,” Nature 546, 270 (Jun. 2017).

    Article  Google Scholar 

  2. N. Mounet, M. Gibertini, Ph. Schwaller, D. Campi, A. Merkys, A. Marrazzo, Th. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, “Twodimensional materials from high-throughput computational exfoliation of experimentally known compounds,” Nature Nanotechnol. 13 (3), 246–252 (2018).

    Article  Google Scholar 

  3. I. Fufurin, P. Berezhanskiy, I. Golyak, D. Anfimov, E. Kareva, A. Scherbakova, P. Demkin, O. Nebritova, and A. Morozov, “Deep learning for type 1 diabetes mellitus diagnosis using infrared quantum cascade laser spectroscopy,” Materials 15 (9), 2984 (2022).

    Article  Google Scholar 

  4. Yuhui Li, Yan-Fang Zhang, Jun Deng, Wen-Han Dong, Jia-Tao Sun, Jinbo Pan, and Shixuan Du, “Rational design of heteroanionic two-dimensional materials with emerging topological, magnetic, and dielectric properties,” J. Phys. Chem. Lett. 13 (16), 3594–3601 (2022).

    Article  Google Scholar 

  5. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, Ch. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condensed Matter 21 (39), 395502 (2009).

    Google Scholar 

  6. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868, (Oct. 1996).

    Article  Google Scholar 

  7. H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B, 13, 5188–5192 (Jun. 1976).

    Article  MathSciNet  Google Scholar 

  8. N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne. “Thermal contraction and disordering of the al(110) surface,” Phys. Rev. Lett. 82, 3296–3299 (Apr. 1999).

    Article  Google Scholar 

  9. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Review B 54 (16), 11169 (1996).

    Article  Google Scholar 

  10. S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski “Lobster: A tool to extract chemical bonding from plane-wave based dft,” J. Comput. Chem. 37 (11), 1030–1035 (2016).

    Article  Google Scholar 

  11. P. Asselin, R. Francis L Evans, J. Barker, R. W Chantrell, R. Yanes, O. Chubykalo-Fesenko, D. Hinzke, and U. Nowak, Constrained monte carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys. Review B 82, 054415, (2010).

    Article  Google Scholar 

  12. R. FL Evans, W. J Fan, Ph. Chureemart, Th. A Ostler, M. OA Ellis, and R. W Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” J. Phys.: Condensed Matter 26, 103202 (2014).

    Google Scholar 

  13. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide. An lsda+u study,” Phys. Rev. B 57, 1505–1509 (Jan 1998).

    Article  Google Scholar 

  14. J. Liu, Q. Sun, Y. Kawazoe, and P. Jena, “Exfoliating biocompatible ferromagnetic crtrihalide monolayers,” Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).

    Article  Google Scholar 

  15. A. D Becke and K. E Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).

    Article  Google Scholar 

  16. J. S. Griffith and L. E. Orgel, “Ligand-field theory. Quarterly Reviews, Chemical Society 11, 381–393 (1957).

    Article  Google Scholar 

  17. Philip W Anderson, “New approach to the theory of superexchange interactions,” Phys. Review 115 (1), 2 (1959).

    Article  MathSciNet  Google Scholar 

  18. H. Wang, F. Fan, S. Zhu, and Hua Wu, “Doping enhanced ferromagnetism and induced half-metallicity in cri3 monolayer, EPL (Europhysics Letters) 114 (4), 47001 (2016).

    Article  Google Scholar 

  19. Wei-Bing Zhang, Qian Qu, Peng Zhu, and Chi-Hang Lam, “Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides,” J. Mater. Chem. C 3 (48), 12457–12468 (2015).

    Article  Google Scholar 

  20. V. V. Kulish and Wei Huang, “Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and monte carlo simulations,” J. Mater. Chem. C 5 (34), 8734–8741 (2017).

    Article  Google Scholar 

  21. A. Kartsev, S. Malkovsky, and A. Chibisov, “Analysis of ionicity-magnetism competition in 2d-mx3 halides towards a low-dimensional materials study based on gpu-enabled omputational systems,” Nanomaterials 11 (11), 2967 (2021).

    Article  Google Scholar 

  22. J. J. Girerd, Y. Journaux, and O. Kahn, “Natural or orthogonalized magnetic orbitals: Two alternative ways to describe the exchange interaction,” Chem. Phys. Lett. 82, 534–538 (1981).

    Article  Google Scholar 

  23. K. L. Seyler, D. Zhong, D. R. Klein, Sh. Gao, X. Zhang, B. Huang, E. Navarro-Moratalla, L. Yang, D. H. Cobden, M. A. McGuire, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, “Ligand-field helical luminescence in a 2d ferromagnetic insulator,” Nature Phys. 14 (3), 277–281 (2018).

    Article  Google Scholar 

  24. P. Bruno, “Spin-wave theory of two-dimensional ferromagnets in the presence of dipolar interactions and magnetocrystalline anisotropy,” Phys. Review B 43, 6015 (1991).

    Article  Google Scholar 

  25. D. Spišák and J. Hafner, “Theory of bilinear and biquadratic effect of exchange interactions in iron: Bulk and surface,” J. Magnetism Magnetic Mater. 168, 257–268 (1997).

    Article  Google Scholar 

  26. S. Meyer, B. Dupé, P. Ferriani, and S. Heinze, “Dzyaloshinskii–Moriya interaction at an antiferromagnetic interface: First-principles study of Fe/Ir bilayers on Rh (001),” Phys. Review B 96, 094408 (2017).

    Article  Google Scholar 

  27. A. Deák, L. Szunyogh, and B. Ujfalussy, “Thickness-dependent magnetic structure of ultrathin Fe/Ir (001) films: From spin-spiral states toward ferromagnetic order,” Phys. Review B 84 (22), 224413 (2011).

    Article  Google Scholar 

  28. J. P. Van der Ziel, “Spectrum of first-nearest-neighbor Cr3+ pairs in ruby,” Phys. Review B 9 (7), 2846 (1974).

    Article  Google Scholar 

  29. J. L. Lado and J. Fernández-Rossier. “On the origin of magnetic anisotropy in two dimensional cri 3. 2D,” Materials 4 (3), 035002 (2017).

    Google Scholar 

  30. S. Feldkemper and W. Weber, “Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic cr compounds,” Phys. Rev. B 57, 7755–7766 (Apr. 1998).

    Article  Google Scholar 

  31. R. N. Bhatt and Kun Yang, “Non-heisenberg couplings and ferromagnetic instability in a random antiferromagnetic spin-1 chain,” J. Appl. Phys 83 (11), 7231–7233 (1998).

    Article  Google Scholar 

  32. F. Mila and Fu-Chun Zhang, “On the origin of biquadratic exchange in spin 1 chains,” Eur. Phys. J. B: Condensed Matter & Complex Syst. 16 (1), 7–10 (2000).

    Article  Google Scholar 

  33. K. Tanaka, Y. Yokoyama, and Ch. Hotta. “Origin of biquadratic exchange interactions in a mottinsulator as a driving force of spin nematic order,” J. Phys. Soc. Japan 87 (2), 023702 (2018).

    Article  Google Scholar 

  34. Lei Wang, Th. Maxisch, and G. Ceder, “Oxidation energies of transition metal oxides within the gga+ u framework,” Phys. Review B 73 (19), 195107 (2006).

    Article  Google Scholar 

  35. Yu. Liu and C. Petrovic, “Three-dimensional magnetic critical behavior in cri3,” Phys. Rev. B 97, 014420 (2018).

    Article  Google Scholar 

  36. L. Chen, Jae-Ho Chung, Bin Gao, Tong Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, “Topological spin excitations in honeycomb ferromagnet cri 3,” arXiv preprint arXiv:1807.11452, 2018.

  37. V. A. Alyoshin, V. A Berezin, and V. A Tulin, “rf susceptibility of single-crystal crbr 3 near the curie temperature,” Phys. Review B 56:719, (1997).

    Article  Google Scholar 

  38. M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, “Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator cri3,” Chem. Mater. 27 (2), 612–620 (2015).

    Article  Google Scholar 

  39. M. A. McGuire, G. Clark, K. C. Santosh, W. M. Chance, G. E. Jellison, Jr., V. R. Cooper, X. Xu, and B. C. Sales, “Magnetic behavior and spin-lattice coupling in cleavable van der waals layered crcl 3 crystals,” Phys. Review Mater. 1 (1), 014001 (2017).

    Article  Google Scholar 

  40. T. Iwashita and N. Uryû, “Effects of biquadratic exchange in ferromagnets,” Phys. Review B 14 (7), 3090 (1976).

    Article  Google Scholar 

  41. T. A. Kaplan, “Frustrated classical heisenberg model in one dimension with nearest-neighbor biquadratic exchange: Exact solution for the ground-state phase diagram,” Phys. Review B 80, 012407 (2009).

    Article  Google Scholar 

  42. A. Läuchli, F. Mila, and K. Penc., “Quadrupolar phases of the s = 1 bilinear-biquadratic heisenberg model on the triangular lattice,” Phys. Review Lett. 97, 087205 (2006).

    Article  Google Scholar 

  43. Heung-Sik Kim, D. Vanderbilt, and K. Haule, “Mott metal-insulator transitions in pressurized layered trichalcogenides,” arXiv preprint arXiv:1808.09263, 2018.

  44. Thomas Olsen, “Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids,” Phys. Review B 96 (12), 125143 (2017).

    Article  Google Scholar 

  45. H. L. Zhuang and R. G. Hennig, “Stability and magnetism of strongly correlated single-layer VS2,” Phys. Review B 93 (5), 054429 (2016).

    Article  Google Scholar 

  46. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, “Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators,” Phys. Rev. B 52, R5467–R5470 (Aug. 1995).

    Article  Google Scholar 

  47. A. A. Sorokin, S. V. Makogonov, and S. P. Korolev, “The information infrastructure for collective scientific work in the far east of Russia,” Sci. & Tech. Inform. Process. 44 (4), 302–304 (Oct. 2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Simulation results were obtained using the equipment of Shared Resource Center “Far Eastern Computing Resource”IACP FEB RAS (https://cc.dvo.ru (accessed on 20 March 2022)). We are also grateful to the Shared Facility Center resources ”Data Center of FEB RAS” (Khabarovsk) [47] where the further data processing was performed. Results consistencies with the available experimental data were analyzed by Petr Lega within the framework of the state task at Kotelnikov Institute of Radio Engineering and Electronics, RAS.

Funding

This work was supported by the Russian Science Foundation, project no. 22-23-01189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kartsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartsev, A.I., Obraztsov, K.V. & Lega, P.V. Magnetic Properties of Metal Dichalcogenide in the Frame of Heisenberg-Like Model: DFT and Monte-Carlo Methods. J. Commun. Technol. Electron. 68, 1169–1190 (2023). https://doi.org/10.1134/S1064226923100054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923100054

Navigation