Skip to main content
Log in

Correlation-Based Reception Method of Radio Light with Spatial Resolution and Its Implementation

  • ON THE 70th ANNIVERSARY OF THE INSTITUTE OF RADIOENGINEERING AND ELECTRONICS, RUSSIAN ACADEMY OF SCIENCES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method for receiving ultra-wideband noise-like microwave radiation, “radio light,” based on the correlation reception of signals from spatially separated receiving antennas, is considered in order to further efficiently form images of a medium illuminated by radio light. A mathematical model has been developed to study the formed response of the receiving system and evaluate the influence of the signal accumulation time on its dynamic range. One-dimensional responses of the correlation receiving system to point sources of radiation, which were used as radio light sources, are obtained. An experimental model of a radio light correlation receiver has been developed and physical experiments have been carried out with it, confirming the results of the simulation, as well as the efficiency of the proposed approach in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. S. Dmitriev, E. V. Efremova, M. Y. Gerasimov, V. V. Itskov, J. Commun. Technol. Electron. 61 (11), 1259 (2016). https://doi.org/10.1134/S1064226916110024

    Article  Google Scholar 

  2. A. S. Dmitriev and E. V. Efremova, Tech. Phys. Lett. 43, 42 (2017).

    Article  Google Scholar 

  3. Yu. V. Gulyaev, A. S. Dmitriev, V. V. Itskov, M. M. Petrosyan, A. I. Ryzhov, and A. V. Uvarov, Tech. Phys. Lett. 44, 988 (2018).

    Article  Google Scholar 

  4. Yu. V. Gulyaev, A. S. Dmitriev, V. V. Itskov, M. M. Petrosyan, A. I. Ryzhov, and A. V. Uvarov, J. Commun. Technol. Electron. 63 (11), 1009 (2018). https://doi.org/10.1134/S0033849418090085

    Article  Google Scholar 

  5. A. S. Dmitriev, V. V. Itskov, M. M. Petrosyan, M. G. Popov, and A. I. Ryzhov, J. Commun. Technol. Electron. 64 (9), 987 (2019).

    Article  Google Scholar 

  6. A. S. Dmitriev, V. V. Itskov, M. M. Petrosyan, and A. I. Ryzhov, Fiz. Osnovy Priborostr. 9 (3), 32 (2020).

    Google Scholar 

  7. F. Adib, C.-Y. Hsu, H. Mao, et al., ACM Trans. Graph. 34 (6), 1 (2015). https://doi.org/10.1145/2816795.2818072

    Article  Google Scholar 

  8. M. Zhao, Y. Liu, A. Raghu, et al., in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Korea (South), 2019 (IEEE, New York, 2019). p. 10112. https://doi.org/10.1109/ICCV.2019.01021

  9. S. Vakalis, L. Gong, and J. A. Nanzer, IEEE Access 7, 28616 (2019). https://doi.org/10.1109/ACCESS.2019.2902315

    Article  Google Scholar 

  10. S. Vakalis and J. A. Nanzer, IEEE Trans. Microwave Theory Tech. 66 (12), 5842 (2018). https://doi.org/10.1109/TMTT.2018.2867433

    Article  Google Scholar 

  11. S. E. Shipilov, R. N. Satarov, V. P. Yakubov, et al., Opt. Quantum Electron. 49 (339), 1 (2017). https://doi.org/10.1007/s11082-017-1172-7

    Article  Google Scholar 

  12. K. Tan, S. Wu, Y. Wang, et al., IEEE Trans. Antennas Propag. 65 (2), 989 (2017). https://doi.org/10.1109/TAP.2016.2632626

    Article  Google Scholar 

  13. C. R. Karanam and Y. Mostofi, in Proc. 16th ACM/IEEE Int. Conf. Information Processing in Sensor Networks (IPSN), 2017 (IEEE, New York, 2017), p. 131. https://doi.org/10.1145/3055031.3055084

  14. B. Korany, C. R. Karanam, and Y. Mostofi, in Proc. IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018 (IEEE, New York, 2018), p. 134. https://doi.org/10.1109/SAM.2018.8448565

  15. S. V. Ivashov and A. S. Bugaev, Radiotekh. Elektron. (Moscow) 58, 935 (2013). https://doi.org/10.7868/S0033849413090052

    Article  Google Scholar 

  16. A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, 3rd ed. (Springer, New York, 2017). https://doi.org/10.1007/978-3-319-44431-4

    Book  Google Scholar 

  17. Yu. A. Romanyuk Basics of Signal Processing: Training Manual (MFTI, Moscow, 1989).

    Google Scholar 

  18. Yu. A. Romanyuk, Discrete Fourier Transform in Digital Spectral Analysis (MFTI, Moscow, 2007).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-29-00070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ryzhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrosyan, M.M., Ryzhov, A.I. Correlation-Based Reception Method of Radio Light with Spatial Resolution and Its Implementation. J. Commun. Technol. Electron. 68, 1015–1023 (2023). https://doi.org/10.1134/S106422692309022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692309022X

Navigation