Skip to main content
Log in

Study of Superconducting Transmission Lines and Tunnel Junctions for Signal Detection at Frequencies above 1 THz

  • ON THE 70th ANNIVERSARY OF THE INSTITUTE OF RADIOENGINEERING AND ELECTRONICS, RUSSIAN ACADEMY OF SCIENCES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Superconducting integrated circuits based on NbTiN/Al transmission lines at frequencies of up to 1.1 THz have been developed and experimentally investigated. The numerical simulation has been carried out for two topologies of a microcircuit with an operating frequency range of 0.9‒1.2 THz, which contains a slot antenna formed in the NbTiN thin film and output-matched with a microstrip transmission line and a superconductor‒insulator‒superconductor (SIS) tunnel junction with an area of ~1 µm2 acting as a terahertz detector. Experimental samples of the microcircuit have been fabricated and tested in an experimental setup utilizing a backward-wave oscillator with an output frequency of up to 1.1 THz used as a source. The powerful pumping of the SIS detector has been obtained to demonstrate the applicability of the fabricated NbTiN/Al transmission lines for operation in superconducting circuits at frequencies above 750 GHz, where the conventional Nb/Nb transmission lines cannot operate due to high losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, New York, 2008). https://doi.org/10.1201/9781420007701

    Book  Google Scholar 

  2. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, ChemPhysChem 8 (17), 2412 (2007). https://doi.org/10.1002/cphc.200700332

  3. A. G. Davies, A. D. Burnett, W. Fan, et al., Mater. Today 11 (3), 18 (2008). https://doi.org/10.1016/S1369-7021(08)70016-6

    Article  Google Scholar 

  4. J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985). https://doi.org/10.1103/RevModPhys.57.1055

    Article  Google Scholar 

  5. A. Vettoliere, R. Satariano, R. Ferraiuolo, et al., Nanomaterials 12 (23), 4155 (2022). https://doi.org/10.3390/nano12234155

    Article  Google Scholar 

  6. D. C. Mattis and J. Bardeen, Phys. Rev. 111 (2), 412 (1958). https://doi.org/10.1103/PhysRev.111.412

    Article  Google Scholar 

  7. J. W. Kooi, J. A. Stern, G. Chattopadhyay, et al., Int. J. Infrared and Millimeter Waves 19 (3), 373 (1998). https://doi.org/10.1023/A:1022595223782

    Article  Google Scholar 

  8. B. D. Jackson, et al., IEEE Trans. Appl. Supercond. 11, 653 (2001). https://doi.org/10.1109/77.919429

    Article  Google Scholar 

  9. A. R. Kerr and S. K. Pan, Intern. J. Infrared and Millimeter Waves 11 (10), 1169 (1990). https://doi.org/10.1007/BF01014738

    Article  Google Scholar 

  10. V. Belitsky, C. Risacher, M. Pantaleev, and V. Vassilev, Intern. J. Infrared and Millimeter Waves 27 (1), 809 (2006). https://doi.org/10.1007/s10762-006-9116-5

    Article  Google Scholar 

  11. A. Khudchenko, B. N. R. Lap, K. I. Rudakov, et al., IEEE Trans. Appl. Supercond. 32 (4), 1500506 (2022). https://doi.org/10.1109/TASC.2022.3147736

    Article  Google Scholar 

  12. P. N. Dmitriev, I. L. Lapitskaya, L. V. Filippenko, et al., IEEE Trans. Appl. Supercond. 13 (2), 107 (2003). https://doi.org/10.1109/TASC.2003.813657

    Article  Google Scholar 

  13. A. Khudchenko, A. M. Baryshev, K. I. Rudakov, et al., IEEE Trans. on Terahertz Sci. & Technol. 6 (1), 127 (2016). https://doi.org/10.1109/TTHZ.2015.2504783

    Article  Google Scholar 

  14. M. Yu. Fominsky, L. V. Filippenko, A. M. Chekushkin, et al., Electronics 10 (23), 2944 (2021). https://doi.org/10.3390/electronics10232944

    Article  Google Scholar 

  15. A. M. Chekushkin, L. V. Filippenko, M.Yu. Fominskii, and V.P. Koshelets, FTT 64, 1399 (2022).

    Google Scholar 

  16. C. C. Grimes and S. Shapiro, Phys. Rev. 169, 397 (1968). https://doi.org/10.1103/PhysRev.169.397

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.M. Baryshev for help with numerical calculations. The authors are grateful for the opportunity to access Unique Scientific Unit (USU) no. 352529 Cryointegral, which was used to fabricate the samples and carry out the investigations.

Funding

The development of the technology, fabrication of the samples, and the experiment were supported by the Russian Science Foundation, project no. 23-79-00019, https://rscf.ru/project/23-79-00019/; the numerical calculation was carried out within the framework of the state task at the Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; and operation of the Unique Scientific Unit, project no. 352529 “Cryointegral” was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kinev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinev, N.V., Chekushkin, A.M., Khan, F.V. et al. Study of Superconducting Transmission Lines and Tunnel Junctions for Signal Detection at Frequencies above 1 THz. J. Commun. Technol. Electron. 68, 946–951 (2023). https://doi.org/10.1134/S1064226923090127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923090127

Navigation