Skip to main content
Log in

Comparison of Methods for Calculation of Superconducting Integrated Structures Using Semi-Analytical Calculation and 3D Numerical Simulation

  • ON THE 70th ANNIVERSARY OF THE INSTITUTE OF RADIOENGINEERING AND ELECTRONICS, RUSSIAN ACADEMY OF SCIENCES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Superconducting integrated structures are simulated in a frequency range of 300–750 GHz using two methods: (i) ABCD matrices related to each element of the circuit and (ii) Ansys HFSS software. The surface impedance of superconducting films is numerically calculated using expressions from the Mattis–Bardeen theory. For samples with microstrip line widths of less than one quarter of the wavelength, both models are in qualitative agreement with each other and with experimental data. It is shown that an increase in the width of the lines and the geometric dimensions of other circuit elements leads to generation of transverse modes and non-plane wave front of waves propagating along the lines, which causes discrepancy between the semi-analytical and numerical calculations, while the latter are in agreement with the experiment for all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. T. Kojima, M. Kroug, M. Takeda, et al., Appl. Phys. Express 2, 102201 (2009). https://doi.org/10.1143/APEX.2.102201

    Article  Google Scholar 

  2. G. De Lange, M. Birk, D. Boersma, et al., Superconductor Sci. Technol. 23, 045016 (2010). https://doi.org/10.1088/0953-2048/23/4/045016

    Article  Google Scholar 

  3. B. Billade, A. Pavolotsky, and V. Belitsky, IEEE Trans. on Terahertz Sci. & Technol. 3, 416 (2013). https://doi.org/10.1109/TTHZ.2013.2255734

    Article  Google Scholar 

  4. V. V. Schmidt, Introduction to the Physics of Superconductors (MTsNMO, Moscow, 2000).

  5. K. A. Baksheeva, R. V. Ozhegov, G. N. Goltsman, et al., IEEE Trans. on Terahertz Sci. & Technol. 11 (4), 381 (2021). https://doi.org/10.1109/TTHZ.2021.3066099

    Article  Google Scholar 

  6. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, V. P. Koshelets, et al., Phys. Solid State 63, 1414 (2021). https://doi.org/10.1134/S1063783421090171

    Article  Google Scholar 

  7. A. M. Barychev, “Superconductor-Insulator-Superconductor THz Mixer Integrated with a Superconducting Flux-Flow Oscillator,” PhD Thesis, (Delft Univ. Technol., Delft, 2005).

  8. Ya. O. Vodzyanovskii, A. V. Khudchenko, and V. P. Koshelets, FTT. 64, 1385 (2022).

    Google Scholar 

  9. V. Fusko, Microwave Circuits (Prentice-Hall Collection Inlibrary, Englewood Cliffs, 1987; Radio i Svyaz’, Moscow, 1990).

  10. D. A. Frickey, IEEE Trans. Microwave Theory Tech. (T-MTT) 42 (2), 205 (1994). https://doi.org/10.1109/22.275248

    Google Scholar 

  11. M. S. Shevchenko, L. V. Filippenko, O. S. Kiselev, and V. P. Koshelets, FTT 64, 1223 (2022).

    Google Scholar 

  12. V. P. Koshelets, S. V. Shitov, L. V. Filippenko, et al., Superconducting Sci. Technol. 17 (127) (2004). https://doi.org/10.1088/0953-2048/17/5/007

  13. V. P. Koshelets and S. V. Shitov, Superconductor Sci. Technol. 13 (5), 53 (2000). https://doi.org/10.1088/0953-2048/13/5/201

    Article  Google Scholar 

  14. J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57 (4), 1055 (1985). https://doi.org/10.1103/RevModPhys.57.1055

    Article  Google Scholar 

  15. L. V. Filippenko, S. V. Shitov, P. N. Dmitriev, et al., IEEE Trans. Appl. Supercond. 11 (1), 816 (2001). https://doi.org/10.1109/77.919469

    Article  Google Scholar 

  16. M. Yu. Fominsky, L. V. Filippenko, A. M. Chekushkin, et al., Electronic. 10 (23), 2944 (2021). https://doi.org/10.3390/electronics10232944

    Article  Google Scholar 

  17. S. K. Tolpygo, V. Bolkhovky, T. J. Weir, et al., IEEE Trans. Appl. Supercond. 25 (3), 1 (2014). https://doi.org/10.1109/TASC.2014.2369213

    Google Scholar 

  18. A. A. Atepalikhin, F. V. Khan, L. V. Filippenko, and V. P. Koshelets, FTT. 64, 1378 (2022).

    Google Scholar 

  19. S. V. Shitov, “Integral devices at superconducting tunnel junctions for millimeter and submillimeter wave receivers,” Doctoral Disssertation (Phys. Math) (IRE im. V. A. Kotel’nikova RAN, Moscow, 2003).

  20. G. Yassin and S. Withington, J. Phys. D: Appl. Phys. 28 (9), 1983 (1995). https://doi.org/10.1088/0022-3727/28/9/028

    Article  Google Scholar 

  21. J. C. Swihart, J. Appl. Phys. 32 (3), 461 (1961). https://doi.org/10.1063/1.1736025

    Article  Google Scholar 

  22. D. C. Mattis and J. Bardeen, Phys. Rev. 111 (2), 412 (1958). https://doi.org/10.1103/PhysRev.111.412

    Article  Google Scholar 

  23. W. Zimmermann, E. H. Brandt, M. Bauer, et al., Physica C: Superconductivity 183 (1–3), 99 (1991). https://doi.org/10.1016/0921-4534(91)90771-P

    Article  Google Scholar 

  24. R. Pöpel, J. Appl. Phys. 66 (12), 5950 (1989). https://doi.org/10.1063/1.343622

    Article  Google Scholar 

  25. S. B. Nam, Phys. Rev. 156 (2), 470 (1967). https://doi.org/10.1103/PhysRev.156.470

    Article  Google Scholar 

  26. S. E. Bankov, A. A. Kurushin, and V. D. Razevig, Analysis and Optimization of Three-dimensional Microwave Structures with the Help of HFSS. Manual (Solon, Moscow, 2005) [in Russian].

    Google Scholar 

  27. A. R. Kerr and S. K. Pan, Int. J. Infrared & Millimeter Waves 11 (10), 1169 (1990). https://doi.org/10.1007/BF01014738

    Article  Google Scholar 

  28. V. Belitsky, C. Risacher, M. Pantaleev, and V. Vassilev, Int. J. Infrared and Millimeter Waves 27 (1), 809 (2006). https://doi.org/10.1007/s10762-006-9116-5

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the access to the unique scientific unit “Cryointegral” (USU no. 352529), which was used for preparation of samples and measurements.

Funding

The development and study of the structures was supported by the Russian Science Foundation, project no. 23-79-00019, https://rscf.ru/project/23-79-00019/. Numerical calculations were carried out within the framework of the state task at Kotelnikov IREE of RAS. The operation of USU “Cryointegral” was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement RF-2296.61321X0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Khan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F.V., Atepalikhin, A.A., Filippenko, L.V. et al. Comparison of Methods for Calculation of Superconducting Integrated Structures Using Semi-Analytical Calculation and 3D Numerical Simulation. J. Commun. Technol. Electron. 68, 983–988 (2023). https://doi.org/10.1134/S1064226923090115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923090115

Navigation