Skip to main content
Log in

Metal–Semiconductor–Metal–ZnS/GaP Detectors for the UV and Visible Spectrum with Electrically Tunable Spectral Photosensitivity

  • ON THE 70th ANNIVERSARY OF THE INSTITUTE OF RADIOENGINEERING AND ELECTRONICS, RUSSIAN ACADEMY OF SCIENCES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

High-quality ZnS epitaxial layers are grown on GaP semiconductor substrates by the MOCVD method. Photodetectors for the visible and UV parts of the spectrum based on interdigital Schottky metal–semiconductor–metal (MSM) barrier contacts to the ZnS/GaР semiconductor structure have been fabricated and studied. The detectors exhibit low dark currents. The dependence of the characteristics of the spectral response of the detectors on the bias voltage is established. It was found that the long-wavelength response limit of ZnS/GaP MSM detectors can shift from 355 to 450 nm when the bias voltage is changed from 10 to 30 V. At the maximum photosensitivity wavelength of 450 nm, the ampere–watt sensitivity of the detector was 0.3 A/W at a bias voltage of 60 V, and the quantum efficiency is 82%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. C. Lin, Y. Lu, Y. Tian, et al., Opt. Express 27 (21), 29962 (2019).

    Article  Google Scholar 

  2. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18 (4), R33 (2003).

    Article  Google Scholar 

  3. T. V. Blank and Yu. A. Gol’dberg, Semiconductors 37, 999 (2003).

    Article  Google Scholar 

  4. Z. Qin, D. Song, Zh. Xu, et al., Organic Electron. 76, Article No. 105417 (2020).

    Article  Google Scholar 

  5. F. Vigue, E. Tournie, and J.-P. Faurie, Electron. Lett. 36 (4), 352 (2000).

    Article  Google Scholar 

  6. E. Monroy, F. Vigue, F. Calle, et al., Appl. Phys. Lett. 77 (17), 2761 (2000).

    Article  Google Scholar 

  7. F. Vigue, E. Tournie, and J.-P. Faurie, IEEE J. Quantum Electron. 37 (9), 1146 (2001).

    Article  Google Scholar 

  8. W.-R. Chen, T.-H. Meen, and Y. -Ch. Cheng, IEEE Electron Device Lett. 27 (25), 347 (2006).

    Article  Google Scholar 

  9. Z. Qin, D. Song, Zh. Xu, et al., Organic Electron. 76, 105417 (2020).

    Article  Google Scholar 

  10. O. A. Sinitskaya, K. Yu. Shubina, D. V. Mokhov, et al., St. Petersburg Polytech. Univ. J.: Phys. Math. 15 (3), 157 (2022).

    Google Scholar 

  11. J. B. D. Soole and H. Schumaher, IEEE J. Quantum Electron. 27 (3), 737 (1991).

    Article  Google Scholar 

  12. S. V. Averin, Yu. V. Gulyaev, M. D. Dmitriev, et al., Kvantov. Elektron. 23, 284 (1996).

    Google Scholar 

  13. S. V. Averin, P. I. Kuznetsov, V. A. Zhitov, et al., Semiconductors 49, 1393 (2015).

    Article  Google Scholar 

  14. R. M. A. Azzam and N. M. Bashara, EllipsometrY and Polarized Light (Amsterdam etc., 1977; Mir, Moscow, 1981).

  15. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27 (2), 985 (1983).

    Article  Google Scholar 

  16. S. V. Averine, Y. C. Chan, and Y. L. Lam, Solid-State Electron. 45, 441 (2001).

    Article  Google Scholar 

  17. S. V. Averin, P. I. Kuznetzov, and N. V. Alkeev, Tech. Phys. 79, 1490 (2009).

    Article  Google Scholar 

  18. S. V. Averin, P. I. Kuznetzov, V. A. Zhitov, et al., Solid-State Electron. 114, 135 (2015).

    Article  Google Scholar 

  19. S. V. Averin and R. Sachot, Solid-State Electron. 44 (9), 1627 (2000).

    Article  Google Scholar 

  20. I.-H. Lee, Phys. Status Solidi A 192 (1), R4 (2002).

    Article  Google Scholar 

  21. D.-W. Kim, K.-S. Chea, Y.-J. Park, et al., Phys. Status Solidi A 201, 2686 (2004).

    Google Scholar 

  22. K. W. Liu, J. G. Ma, J. Y. Zhang, et al., Solid-State Electron. 51 (5), 757 (2007).

    Article  Google Scholar 

  23. N. N. Janow, F. K. Yam, S. M. Thahab, et al., Current Appl. Phys. 10, 1452 (2010).

    Article  Google Scholar 

  24. S. J. Chang, Y. K. Su, W. R. Chen, et al., IEEE Photonics Technol. Lett. 14 (2), 188 (2002).

    Article  Google Scholar 

  25. Z. Yan, S. Jinglan, W. Nili, et al., J. Semiconductors 31, 124015 (2010).

    Article  Google Scholar 

  26. Z. Zhang, H. Wenckstern, M. Schmidt, and M. Grundmann, Appl. Phys. Lett. 99, 083502 (2011).

    Article  Google Scholar 

  27. E. H. Rhoderick and R. H. Williams, Metal–Semiconductor Contacts (Oxford. Univ. Press, Oxford, 1988).

    Google Scholar 

  28. I. K. So, H. Ma, Z. Q. Zhang, and G. K. L. Wong, Appl. Phys. Lett. 76 (9), 1098 (2000).

    Article  Google Scholar 

  29. I. K. Sou, M. C. W. Wu, T. Sun, et al., J. Electron. Mater. 30 (6), 673 (2001).

    Article  Google Scholar 

  30. T. K. Lin, S. J. Chang, Y. K. Su, et al., Mater. Sci. Engineering B 119 (2), 202 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank P.I. Kuznetsov for providing samples of semiconductor structures.

Funding

The study was supported by the state task of the Institute of Kotelnikov Radioengineering and Electronics, Russian Academy of Sciences, project no. 075-01110-23-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Averin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averin, S.V., Zhitov, V.A., Zakharov, L.Y. et al. Metal–Semiconductor–Metal–ZnS/GaP Detectors for the UV and Visible Spectrum with Electrically Tunable Spectral Photosensitivity. J. Commun. Technol. Electron. 68, 1009–1014 (2023). https://doi.org/10.1134/S1064226923090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923090024

Navigation