Skip to main content
Log in

Application of the 2D Code Tamic Analyzer Based on the Method of Impedance Analog of the Sestroretskii Electromagnetic Space for Problems of Plasma Diagnostics in Tokamak Fusion Facilities

  • TO THE 100th ANNIVERSARY OF B.V. SESTRORETSKII
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Applications of the two-dimensional full-wave electromagnetic code Tamic Analyzer, developed by B.V. Sestroretskii to study the limiting possibilities of diagnostics of reflectometry in tokamak plasma. It is shown that by comparing experimental reflectometry data with calculations using this code, it is possible to determine the structure of density fluctuations in a tokamak, but the experimental radial correlation lengths can be significantly overestimated. Simulation using the Taimic Anylyser code made it possible to determine the limiting level of density fluctuations at which it is possible to measure the plasma density profile and observe Alfven fluctuations in the International Experimental Thermonuclear Reactor of the tokamak type (ITER) under construction. Possible ways to increase the speed and counting field of the code are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. S. V. Mirnov, Physical Processes in Tokamak Plasma (Energoatomizdat, Moscow, 1983). p. 393.

    Google Scholar 

  2. R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002).

    Article  Google Scholar 

  3. B. V. Sestroretskii, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 2, 113 (1976).

  4. B. V. Sestroretskii, in Interuniversity collection of scientific works “Machine Design of Devices and Microwave oven Systems” (MIREA, Moscow, 1977), p. 127.

    Google Scholar 

  5. B. V. Sestroretskii, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 5, 56 (1983).

  6. V. M. Seredov, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 5, 34 (1983).

  7. B. V. Sestroretskii and V. A. Tishchenko, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 11, 29 (1987).

  8. B. V. Sestroretskii and V. Yu. Kustov, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 2, 3 (1988).

  9. B. V. Sestroretskii, V. Yu. Kustov, and Yu. O. Shlepnev, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 12, 26 (1988).

  10. V. Yu. Kustov, “Impedance interpretation of a finite element method for the electrodynamic analysis of planar waveguide devices,” Cand. Sci. (Tekhn.) Dissertation (MFTI, Moscow, 1988), p. 210.

  11. B. V. Sestroretskii and A. V. Zinov’ev, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 12, 43 (1988).

  12. Yu. O. Shlepnev, “Application of the method of straight lines for mathematical modeling of planar elements of integrated circuits microwave ovens,” Cand. Sci. (Tekhn.) Dissertation (NEIS, Novosibirsk, 1990), p. 194.

  13. B.V. Sestroretskii and I. Yu. Kartsev, Vopr. Radioelektron. Ser. Obshchie Vopr. Radioelektron., No. 1, 18 (1991).

  14. I. Yu. Kartsev, “A method of impedance and net function of Green for the solution of two-dimensional problems of diffraction,” Cand. Sci. (Tekhn.) Dissertation (MEI, Moscow, 1991), p. 138.

  15. K. N. Klimov, B. V. Sestroretskii, V. A. Vershkov, et al., “Electrodynamic Analysis of Two-Dimensional Non-Uniform Environments and Plasma. (Maks Press, Moscow, 2005).

    Google Scholar 

  16. K. N. Klimov, “Methodology of the numerical analysis in a time domain of two-dimensional impedance and net models of antenna systems and electrodynamic objects of big dimension,” Doct. Sci. (Tekhn.) Dissertation (MIEM, Moscow, 2007), p. 402.

  17. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 24 (2001).

    Google Scholar 

  18. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 247 (2001).

    Google Scholar 

  19. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 359 (2001).

    Google Scholar 

  20. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 595 (2001).

    Google Scholar 

  21. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 968 (2001).

    Google Scholar 

  22. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 1131 (2001).

    Google Scholar 

  23. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 50, 383 (2005).

    Google Scholar 

  24. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 50, 591 (2005).

    Google Scholar 

  25. K. N. Klimov, T. V. Kamyshev, V. A. Ruchenkov, and B. V. Sestroretskii, J. Commun. Technol. Electron. 51, 725 (2006). Klimov K.N., Sestroretskii B.V. // RE. 2006. T. 51. № 7. S. 773.

  26. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 52, 1 (2007).

    Article  Google Scholar 

  27. V. A. Vershkov, D. A. Shelukhin, S. V. Soldatov, A. O. Urazbaev, et al., Nucl. Fus. 45 (10), P. S203 (2005).

    Article  Google Scholar 

  28. S. D. Pinches, I. T. Champan, Ph. W. Lauber, et al., Phys. Plasmas 22 021807 (2015).

    Article  Google Scholar 

  29. A. Fasoli, C. Gormenzano, H. L. Berk, et al., Nucl. Fus. 47 S264 (2007).

    Article  Google Scholar 

  30. V. A. Vershkov, S. V. Soldatov, D. A. Shelukhin, and A. O. Urazbaev, Instrum. Exp. Tech., No. 2, 182 (2004).

  31. K. I. Konov and K. N. Klimov, J. Commun. Technol. Electron. 67, 938 (2022).

    Article  Google Scholar 

  32. M. Yu. Isaev, S. Yu. Medvedev and W. A. Cooper, Plasma Phys. Rep. 43, 109 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Klimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershkov, V.A., Shelukhin, D.A., Isaev, M.Y. et al. Application of the 2D Code Tamic Analyzer Based on the Method of Impedance Analog of the Sestroretskii Electromagnetic Space for Problems of Plasma Diagnostics in Tokamak Fusion Facilities. J. Commun. Technol. Electron. 68, 883–895 (2023). https://doi.org/10.1134/S1064226923080144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923080144

Navigation