Skip to main content
Log in

Using the Method of the Impedance Analog of the Sestroretskii Electromagnetic Space to Take Into Account the Influence of the Rocket Engine Plasma on the Radiation Pattern of the Onboard Antenna

  • TO THE 100th ANNIVERSARY OF B.V. SESTRORETSKII
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of the influence of the rocket engine plume (REP) plasma on the radiation pattern (RP) of the onboard third stage antennas launch vehicle. The possibility of using the method of the impedance analog of the Sestroretskii electromagnetic space for solving this problem is shown. The distribution pattern of the plasma frequency in the REP is presented. The distribution patterns of the amplitude and phase of the magnetic field in the region under study are obtained. The RPs of the antenna system are presented, showing a significant shift in the direction of the main lobe and a change in its shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. B. V. Sestroretskii, Vopr. Radioelektron. Ser. Obshch. Vopr. Radioelektron., No. 2, 113 (1976).

  2. B. V. Sestroretskii, Vopr. Radioelektron. Ser. Obshch. Vopr. Radioelektron., No. 5, 56 (1983).

  3. V. M. Seredov, Vopr. Radioelektron. Ser. Obshch. Vopr. Radioelektron., No. 5, 34 (1983).

  4. B. V. Sestroretskii, in Interuniversity collection of scientific works “Machine Design of Devices and Microwave oven Systems” (MIREA, Moscow, 1977), p. 127.

    Google Scholar 

  5. V. Yu. Kustov, “Impedance interpretation of a finite element method for the electrodynamic analysis of planar waveguide devices,” Candidate’s Dissertation in Engineering (MFTI, Moscow, 1988).

  6. Yu. O. Shlepnev, " Application of the method of straight lines for mathematical modeling of planar elements of integrated circuits microwave ovens," Candidate’s Dissertation in Engineering (NEIS, Novosibirsk, 1990).

  7. I. Yu. Kartsev, “Method of impedance and net function of Green for the solution of two-dimensional problems of diffraction,” Candidate’s Dissertation in Engineering (MEI, Moscow, 1991).

  8. K. N. Klimov, “Methodology of the numerical analysis in a time domain of two-dimensional impedansnosetochny models of antenna systems and electrodynamic objects of big dimension,” Doctoral Dissertation in Engineering (MIEM, Moscow, 2007).

  9. K. I. Konov and K. N. Klimov, J. Commun. Technol. Electron. 67, 938 (2022).

    Article  Google Scholar 

  10. D. E. McIver, in Proc. NASA Conf. on Communicating Through Plasmas of Atmospheric Entry and Rocket Exhaust, Hampton, Jan. 14–15, 1964 (NASA, Washington, DC, 1964).

  11. L. D. Smoot and T. J. Seliga, J. Spacecr. Rockets 4 (6), 774 (1967).

    Article  Google Scholar 

  12. K. Kinefuchi, I. Funaki, H. Ogawa, et al., in Proc. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009, p. 1386. https://doi.org/10.2514/6.2009-1386

  13. K. Kinefuchi, I. Funaki, T. Shimada, and T. Abe, J. Spacecr. Rockets 47, 627 (2010).

    Article  Google Scholar 

  14. K. Kinefuchi, I. Funaki, and T. Abe, IEEE Trans. Antennas Propag. 58, 3282 (2010).

    Article  Google Scholar 

  15. K. Kinefuchi, I. Funaki, and T. Abe, J. Spacecr. Rockets 50 (1), 150 (2013). https://doi.org/10.2514/1.A32223

    Article  Google Scholar 

  16. R. K. McCargar, K. M. Siegrist, J. G. Reuster, et al., IEEE Trans. Antennas Propag. 66, 6531 (2020). https://doi.org/10.1109/TAP.2018.2845545

    Article  Google Scholar 

  17. E. Dieudonne, A. Kameni, L. Pichon, and D. Monchaux, Acta Astronaut. 158, 334 (2019). https://doi.org/10.1016/j.actaastro.2019.03.032

    Article  Google Scholar 

  18. N. Coutu, W. Barrot, W. Engblom, and E. Perrell, in Proc. IEEE Southeastcon., Jacksonville, USA Apr. 4–7, 2013 (IEEE, New York, 2013), p. 1. https://doi.org/10.1109/SECON.2013.6567408

  19. B. Sun, K. Xie, L. Shi, et al., IEEE Trans. Antennas Propag. 68 (12), 8021 (2020). https://doi.org/10.1109/TAP.2020.2999661

    Article  Google Scholar 

  20. K. N. Klimov, in The Innovation, Information and Communication Technologies, (Conf. Sochi, Oct.1–10, 2021), p. 254.

  21. K. N. Klimov and B. V. Sestroretskii, Zh. Radioelektron., No. 2, 3 (2001).

  22. V. A. Ruchenkov, K. N. Klimov, and B. V. Sestroretskii, in Proc. 6th Int. Conf. Antenna Theory and Techniques, Sevastopol’, Sept. 17–21, 2007, p. 312.

  23. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 359 (2001).

    Google Scholar 

  24. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 52, 1 (2007).

    Article  Google Scholar 

  25. S. A. Gershgorin, ZhPF 4 (3-4), 3 (1929

    Google Scholar 

  26. L. I. Gutenmakher, Electric Modeling (Collection of Articles) (AN SSSR, Moscow, 1943).

    Google Scholar 

  27. V. A. Vennikov, Application of the Theory of Similarity and Physical Modeling in Electrical Equipment (Gosenergoizdat, Moscow, 1949).

    Google Scholar 

  28. S. A. Ivanov, B. V. Sestroretskii, and A. N. Bogolyubov, Zh. Radiolektron., No. 5 (2008). http://jre.cplire.ru/jre/may08/6/text.pdf .

  29. I. M. Tetel’baum, Electric Modeling (Collection of Articles) (Fizmatlit, Moscow, 1959), p. 320.

    Google Scholar 

  30. G. Kron, Research of Complex Systems in Parts (Diakoptika) (Nauka, Moscow, 1972), p. 542.

    Google Scholar 

  31. K. N. Klimov, B. V. Sestroretskii, V. A. Vershkov, et al., Electrodynamic Analysis of Two-Dimensional Non-Uniform Environments and Plasma (MAKS, Moscow, 2005).

    Google Scholar 

  32. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 24 (2001).

    Google Scholar 

  33. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 247 (2001).

    Google Scholar 

  34. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 1131 (2001).

    Google Scholar 

  35. K. N. Klimov, B. V. Sestroretskii, S. M. Godin, and V. V. Roshchin, J. Commun. Technol. Electron. 49, 1237 (2004).

    Google Scholar 

  36. A. O. Urazbaev, V. A. Vershkov, S. V. Soldatov, and D. A. Shelukhin, Plasma Phys. Rep. 32, 443 (2006).

    Article  Google Scholar 

  37. B. V. Sestroretskii, Radiotekh. Tetradi, No. 30, 11 (2004).

    Google Scholar 

  38. K. N. Klimov, Radiotekh. Tetradi, No. 30, 15 (2004).

    Google Scholar 

  39. V. A. Ruchenkov, Radiotekh. Tetradi, No. 30, 20 (2004).

    Google Scholar 

  40. V. A. Ruchenkov, Radiotekh. Tetradi, No. 30, 23 (2004).

    Google Scholar 

  41. T. V. Kamyshev, Radiotekh. Tetradi, No. 30, 26 (2004).

    Google Scholar 

  42. T. V. Kamyshev, Radiotekh. Tetradi, No. 30, 31 (2004).

    Google Scholar 

  43. T. V. Kamyshev, K. N. Klimov, and B. V. Sestroretskii, J. Commun. Technol. Electron. 50, 383 (2005).

    Google Scholar 

  44. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 595 (2001).

    Google Scholar 

  45. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 46, 968 (2001).

    Google Scholar 

  46. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 50, 591 (2005).

    Google Scholar 

  47. K. N. Klimov, T. V. Kamyshev, V. A. Ruchenkov, and B. V. Sestroretskii, J. Commun. Technol. Electron. 51, 725 (2006).

    Article  Google Scholar 

  48. A. J. Senol and G. L. Romine, J. Spacecr. Rockets 23 (1), 39 (1986). https://doi.org/10.2514/3.25081

    Article  Google Scholar 

  49. K. Kinefuchi, H. Yamaguchi, M. Minami, et al., Acta Astronaut. 165, 373 (2019). https://doi.org/10.1016/j.actaastro.2019.09.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Konov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konov, K.I., Klimov, K.N. Using the Method of the Impedance Analog of the Sestroretskii Electromagnetic Space to Take Into Account the Influence of the Rocket Engine Plasma on the Radiation Pattern of the Onboard Antenna. J. Commun. Technol. Electron. 68, 836–842 (2023). https://doi.org/10.1134/S1064226923080077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923080077

Navigation