Skip to main content
Log in

Propagation of Powerful Nano- and Subnanosecond Video Pulses in a Medium with Various Thermodynamic Characteristics

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A conservative model is proposed for a weakly conductive material medium with changing thermodynamic characteristics during the propagation of a pulse in it. Equations are obtained that describe the change in the shape of the profile of a video pulse propagating in a medium, as well as in nonlinear transmission lines with a temperature dependence of the permittivity. It is shown that if the temperature coefficient of the permittivity is negative, then the peak power of the pulse can increase with time; otherwise, the temperature dependence of the permittivity leads to an increase in attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. N. Rukin, Rev. Sci. Instrum. 91, 011501 (2020). https://doi.org/10.1063/1.5128297

    Article  Google Scholar 

  2. M. Gundersen, P. T. Vernier, S. B. Cronin, and S. Kerketta, IEEE Trans. Plasma Sci. 48, 742 (2020). https://doi.org/10.1109/TPS.2020.2972934

    Article  Google Scholar 

  3. V. Senaj, Montanes A. A. del Barrio, T. Kramer, et al., JACoW IPA 21, 4454. https://doi.org/10.18429/JACoW-IPAC2021-THPAB340

  4. S. Yu. Sokovnin, Radiation Phys. and Chem. 144, 265 (2018). https://doi.org/10.1016/j.radphyschem.2017.08.023

    Article  Google Scholar 

  5. Montanes A. A. del Barrio, V. Senaj, T. Kramer, et al., J. Phys.: Conf. Ser. IOP Publ. 2420 (1), 012085 (2023). https://doi.org/10.18429/JACoW-IPAC2022-THPOTK044

  6. Q. I. U. Jintao, C. Zhang, L. I. U. Zehui, et al., Plasma Sci. Technol. 23 (6), 064011 (2021). https://doi.org/10.1088/2058-6272/abf299

    Article  Google Scholar 

  7. A. A. Komarskiy, S. R. Korzhenevskiy, and N. A. Komarov, AIP Conf. Proc. 2250 (1), 020018 (2020). https://doi.org/10.1063/5.0013238

    Article  Google Scholar 

  8. K. A. Serguschichev, A. A. Smirnov, V. A. Ilyin, et al., J. Phys.: Conf. Ser. IOP Publ. 1410 (1), 012237 (2019). https://doi.org/10.1088/1742-6596/1410/1/012237

    Article  Google Scholar 

  9. J. Zhang, D. Zhang, Y. Fan, et al., Physics of Plasmas 27 (1), 010501 (2020). https://doi.org/10.1063/1.5126271

    Article  Google Scholar 

  10. V. M. Fedorov, M. V. Efanov, Ye. O. Ostashev, et al., Electronics 10 (9), 1011 (2021). https://doi.org/10.3390/electronics10091011

    Article  Google Scholar 

  11. A. M. Efremov, V. I. Koshelev, B. M. Kovalchuk, et al., Laser and Particle Beams 32 (3), 413 (2014). https://doi.org/10.1017/S0263034614000299

    Article  Google Scholar 

  12. S. K. Singh, S. Mitra, P. Naresh, et al., in Proc. (2014) Int. Conf. IEEE Int. Power Modulator and High Voltage Conf. Santa Fe. NM. USA. 1–5 Jun. 2014, p. 271. https://doi.org/10.1109/IPMHVC.2014.7287261

  13. Y. Ahajjam, O. Aghzout, J. M. Catala-Civera, et al., Advanced Electromagn. 8 (3), 76 (2019).

    Article  Google Scholar 

  14. S. Wen, M. Wang, J. Xie, and D. Wu, Microwave and Optical Technol. Lett. 61, 867 (2019). https://doi.org/10.1002/mop.31654

    Article  Google Scholar 

  15. V. Ahmad, J. Sobus, M. Greenberg, et al., Nature Commun. 11 (1), 4310 (2020). https://doi.org/10.1038/s41467-020-18094-4

    Article  Google Scholar 

  16. B. A. Kozlov, D. S. Makhanko, V. I. Seredinov, and S. A. Pyanchenkov, J. Phys.: Conf. Ser. IOP Publ. 1393 (1), 012010 (2019). https://doi.org/10.1088/1742-6596/1393/1/012010

    Article  Google Scholar 

  17. B. Kozlov, D. Makhan’ko, and V. Seredinov, in Proc. 2020 Int. Conf. 7th Int. Congr. on Energy Fluxes and Radiation Effects IEEE. Tomsk, Russia, 14–16 Sept., 2020, p. 621. https://doi.org/10.1109/EFRE47760.2020.9241987

  18. I. G. Kataev, Shock Electromagnetic Waves (Soveskoe Radio, Moscow, 1963).

    Google Scholar 

  19. L. A. Ostrovskii, Zh. Tekh. Fiz. 33, 1080 (1963).

    Google Scholar 

  20. A. V. Gaponov, L. A. Ostrovskii, and G. I. Freidman, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 10, 1376 (1967).

    Google Scholar 

  21. G. A. Mesyats, Pulse Energetics and Electronics (Nauka, Moscow, 2004), p. 23. [in Russian].

    Google Scholar 

  22. A. B. J. M. Driessen, F. J. C. M. Beckers, T. Huiskamp, and A. J. M. Pemen, IEEE Trans. Plasma Sci. 45, 3288 (2017). https://doi.org/10.1109/TPS.2017.2771275

    Article  Google Scholar 

  23. A. I. Gusev, M. S. Pedos, A. V. Ponomarev, et al., Rev. Sci. Instrum. 89, 094703 (2018). https://doi.org/10.1063/1.5048111

    Article  Google Scholar 

  24. L. Huang, J. Meng, D. Zhu, et al., IEEE Trans. Plasma Sci. 48, 3847 (2020). https://doi.org/10.1109/TPS.2020.3029524

    Article  Google Scholar 

  25. J. Gao, S. Li, C. Shi, et al., Rev. Sci. Instrum. 90, 014704 (2019). https://doi.org/10.1063/1.5053780

    Article  Google Scholar 

  26. S. Y. Karelin, V. B. Krasovitsky, I. I. Magda, et al., Problems of Atomic Sci. Technol. 65 (2019). https://doi.org/10.46813/2019-122-065

  27. P. Priputnev, I. Romanchenko, V. Tarakanov, and I. Pegel, in Proc. 2020 Int. Conf. 7th Int. Congr. on Energy Fluxes and Radiation Effects IEEE, Tomsk, Russia, Sept. 14–16, 2020, p. 434. https://doi.org/10.1109/EFRE47760.2020.9241904

  28. M. R. Ulmaskulov, S. A. Shunailov, K. A. Sharypov, and M. I. Yalandin, J. Appl. Phys. 126, 084504 (2019). https://doi.org/10.1063/1.5110438

    Article  Google Scholar 

  29. E. A. Alichkin, M. S. Pedos, A. V. Ponomarev, et al., Rev. Sci. Instrum. 91, 104705 (2020). https://doi.org/10.1063/5.0017980

    Article  Google Scholar 

  30. A. J. Fairbanks, A. M. Darr, and A. L. Garner, IEEE Access 8, 148606 (2020). https://doi.org/10.1109/ACCESS.2020.3015715

    Article  Google Scholar 

  31. Y. Alpert and E. Jerby, IEEE Trans. Plasma Sci. 27 (2), 555 (1999). https://doi.org/10.1109/27.772285

    Article  Google Scholar 

  32. J. Zhong, S. Liang, Y. Yuan, and Q. Xiong, IEEE Trans. Microwave Theory Tech. 64, 2467 (2016). https://doi.org/10.1109/TMTT.2016.2584613

    Article  Google Scholar 

  33. A. Sid, D. Debbache, and A. Bendib, Phys. Plasmas 13, 083107 (2006). https://doi.org/10.1063/1.2219431

    Article  Google Scholar 

  34. N. E. Andreev, C. Courtois, B. Cros, et al., Phys. Rev. E: 64, 016404 (2001). https://doi.org/10.1103/PhysRevE.64.016404

    Article  Google Scholar 

  35. P. V. Tuev and K. V. Lotov, J. Opt. Soc. Am. A 38, 108 (2021). https://doi.org/10.1364/JOSAA.410552

    Article  Google Scholar 

  36. J. R. Penano, P. Sprangle, B. Hafizi, et al., Phys. Rev. E: 72, 036412 (2005). https://doi.org/10.1103/PhysRevE.72.036412

    Article  Google Scholar 

  37. G. M. Petrov and J. Davis, J. Phys. B: Atomic, Molecular and Optical Physics 41, 025601 (2008). https://doi.org/10.1088/0953-4075/41/2/025601

    Article  Google Scholar 

  38. K. N. Ovchinnikov and S. A. Uryupin, Contributions to Plasma Phys. 59 (7) (2019). https://doi.org/10.1002/ctpp.201800119

  39. D. A. Grigorovich, K. N. Ovchinnikov, and S. A. Uryupin, Plasma Phys. Rep. 48, 1156 (2022). https://doi.org/10.1134/S1063780X22601286

    Article  Google Scholar 

  40. I. S. Rez and Yu. M. Poplavko, Dielectrics: the Main Properties and Applications in Electronics (RiS, 1989).

  41. I. A. Kvasnikov, Thermodynamics and Statistical Physics Vol. 1: Theory of Equilibrium Systems: Thermodynamics (Editorial URSS, Moscow, 2002).

  42. S. A. Akhmanov, Usp. Fiz. Nauk 149, 361 (1986).

    Article  Google Scholar 

  43. M. A. Silaghi, Dielectric Mater (IntechOpen, London, 2012). https://doi.org/10.5772/50638

    Book  Google Scholar 

  44. Yu. Ya. Iossel’, E. S. Kochanov, and M. G. Strunskii Calculation of Electric Capacity (Energoizdat, Leningrad, 1981), p. 147.

    Google Scholar 

  45. P. L. Kalantarov and L.A.Tseitlin, Calculation of Inductances (Energoatomizdat, Leningrad, 1986), p. 132.

    Google Scholar 

  46. J. Krupka, K. Derzakowski, B. Riddle, and J. Baker-Jarvis, Measurement Sci. Technol. 9, 1751 (1998).

    Article  Google Scholar 

  47. P. S. Glazunov, V. A. Vdovin, and A. I. Slepkov, Zh. Radioelektron., No. 2, (2019). https://doi.org/10.30898/1684-1719.2019.2.1

  48. M. E. Savage, L. F. Bennett, D. E. Bliss, et al., in Proc. Int. Conf. 2007 & 16th IEEE Int. Pulsed Power Conf., Albuquerque, NM, USA, June 17–22, 2007 (IEEE, New York, 2008), Vol. 2., p. 979. https://doi.org/10.1109/PPPS.2007.4652354

  49. T. Luo, X. Shan, J. Zhao, et al., J. Am. Ceram. Soc. 102, 3849–3853 (2019). https://doi.org/10.1111/jace.16415

  50. D. de Ligny and P. Richet, Phys. Rev. B 53 (6), 3013. (1996). https://doi.org/10.1103/PhysRevB.53.3013

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of the article are grateful to V.V. Kulagin and V.A. Cherepenin for valuable comments on the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vdovin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazunov, P.S., Vdovin, V.A. & Saletskii, A.M. Propagation of Powerful Nano- and Subnanosecond Video Pulses in a Medium with Various Thermodynamic Characteristics. J. Commun. Technol. Electron. 68, 910–919 (2023). https://doi.org/10.1134/S1064226923080053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923080053

Navigation