Skip to main content
Log in

Features of the Formation of the Nutation Line in Nuclear Magnetic Resonance Magnetometers and Liquid Flow Meters

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A mechanism of formation of the nutation line in a flowing liquid is discussed. New equations of motion of the longitudinal and transverse components of the magnetization vector in a nutation coil are derived, which take into account magnetic field inhomogeneity ΔН0 in the area of impact of RF field Н1 on the flowing fluid. In addition, the equations make allowance for the nature of magnetic field inhomogeneity change ΔН0 during motion of the liquid along the nutation coil. The results of experimental investigations of the nutation line shape are reported. The theoretical calculation is compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. E. Pryakhin, S. S. Shushkevich, and I. O. Orobei, Prib. Tekh. Eksp., No. 6, 186 (1983).

  2. V. V. Davydov and V. V. Semenov, J. Commun. Technol. Electron. 44, 1410 (1999).

    Google Scholar 

  3. A. E. Mefed, Zh. Eksp. Teor. Fiz. 86, 302 (1984).

    Google Scholar 

  4. B. Gizatullin, M. Gafurov, F. Murzakhanov, et al., Langmuir 37 (22), 6783 (2021).

    Article  Google Scholar 

  5. M. Ya. Marusina, B. A. Bazarov, P. A. Galaidin, et al., Izmer. Tekh., No. 5, 68 (2014).

  6. M. Y. Marusina and E. A. Karaseva, Asian Pacific J. Cancer Prevention 19, 2771 (2018).

    Google Scholar 

  7. B. Gizatullin, M. Gafurov, A. Vakhin, et al., Energy and Fuels 33, 10923 (2019).

    Article  Google Scholar 

  8. Yu. I. Neronov and N. N. Seregin, Izmer. Tekh., No. 11, 41 (2012).

  9. K. T. O' Neill, L. Brancato, P. L. Stanwix, et al., Chem. Eng. Sci. 202, 222 (2019).

    Article  Google Scholar 

  10. V. V. Davydov, V. I. Dudkin, and A. U. Karseev, Optical Memory & Neural Networks (Inform. Opt.) 22 (2), 112 (2013).

  11. A. V. Semenikhin, Yu. V. Saunin, and S. I. Ryasnyi, At. Energ. 124, 8 (2018).

    Article  Google Scholar 

  12. S. V. D’yachenko and A. I. Zhernovoi, Tech. Phys. 61, 1830 (2016).

    Article  Google Scholar 

  13. O. S. Vitkovskii and M. Ya. Marusina, Izmer. Tekh. 59 (3), 31 (2016).

    Google Scholar 

  14. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Instrum. Exp. Tech. 58, 787 (2015).

    Article  Google Scholar 

  15. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Tech. Phys. 85, 456 (2015).

    Article  Google Scholar 

  16. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Pis’ma Zh. Eksp. Teor. Fiz. 41, (7), 103 (2015).

    Google Scholar 

  17. GOST 8.095–73. The State Primary Standard and the All-Union Testing Scheme for Measuring Instruments of Magnetic Induction (Izd. Standartov, Moscow, 1973).

  18. GOST 8.144–75. The State Special Standard and the All-Union Testing Scheme for Measuring Instruments of Magnetic Induction in the Range 0.05-2 Tl (Izd. Standartov, Moscow, 1975).

  19. V. M. Simonov and V. K. Yagola, Izmer. Tekh., No. 10, 76 (1975).

  20. G. K. Yagola, Yu. I. Kazantsev, V. M. Simonov, et al., Izmer. Tekh., No. 3, 52 (1976).

  21. S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, Tech. Phys. 63, 984 (2018).

    Article  Google Scholar 

  22. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (2), 8 (2015).

    Google Scholar 

  23. A. I. Zhernovoi and S. V. D’yachenko, Tech. Phys. 60, 595 (2015).

    Article  Google Scholar 

  24. V. V. Davydov, V. I. Dudkin, E. N. Velichko, and A. Yu. Karseev, Izmer. Tekh. 58 (5), 56 (2015).

    Google Scholar 

  25. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, et al., IEEE Trans. Nucl. Sci. 60, 2015 (2013).

    Article  Google Scholar 

  26. P. F. Kashaykin, A. L. Tomashuk, M. Y. Salgansky, et al., J. Appl. Phys. 121, 213104 (2019).

    Article  Google Scholar 

  27. D. S. Dmitrieva, V. M. Pilipova, and V. Y. Rud, Lecture Notes in Computer Science (LNCS) (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12526, 348 (2020).

  28. V. K. Ignatiev, N. G. Lebedev, A. A. Orlov, and S. V. Perchenko, J. Magn. Magn. Mater. 494, 165658 (2020).

    Article  Google Scholar 

  29. A. Leshe, Nuclear Induction (Verlag Wissenschaften, Berlin, 1963).

    Google Scholar 

  30. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Mir, Moscow, 1963).

  31. V. V. Davydov, V. I. Dudkin, and A. Y. Karseev, Izmer. Tekh. 58, 317 (2015).

    Google Scholar 

  32. A. I. Zhernovoi, Measurement of Magnetic Fields by the Nutation Method (Energia, Leningrad, 1979).

    Google Scholar 

  33. A. I. Zhernovoi, Nuclear Magnetic Flowmeters (Mashinostroenie, Leningrad, 1985).

    Google Scholar 

  34. V. I. Chizhik, Nuclear Magnetic Relaxation (Len. Gos. Univ., Leningrad, 1991).

    Google Scholar 

  35. P. M. Borodin, M. I. Volodichev, V. V. Moskalev, and A. A. Morozov, Nuclear Magnetic Resonance (Len. Gos. Univ., Leningrad, 1982).

    Google Scholar 

  36. V. V. Davydov and V. V. Semenov, Instrum. Exp. Tech. 42, 427 (1999).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Davydov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.V., Logunov, S.E., Provodin, D.S. et al. Features of the Formation of the Nutation Line in Nuclear Magnetic Resonance Magnetometers and Liquid Flow Meters. J. Commun. Technol. Electron. 68, 1230–1239 (2023). https://doi.org/10.1134/S1064226923070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923070021

Navigation