Skip to main content
Log in

Fresnel-Type Transition Zones

  • ON THE 85TH ANNIVERSARY OF DMITRII SERGEEVICH LUKIN
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A family of exact solutions of the two-dimensional Helmholtz equation is constructed, which are suitable for describing wavefields in transition zones arising in Fresnel-type diffraction. As examples, in addition to wedge diffraction, high-frequency asymptotics of the field in problems of diffraction on obstacles with non-smooth curvature are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. Interpretation of mathematical expressions for wavefields implies the harmonic time-dependence \({\text{exp}}\left( { - i\omega t} \right)\), where \(t\) is time and \(\omega \) is angular frequency.

  2. Parabolic coordinates are useful in such problems, since in the region (1), (6) the phase difference \(kr - kx\) can be considered constant on parabolas \(x = C{{y}^{2}}\).

  3. The difference of phases of the waves is constant along these lines, \(r{\kern 1pt}^{'} - r = {\text{const}}\).

REFERENCES

  1. G. D. Malyuzhinets, Sov. Phys. Uspekhi 69, 749 (1960).

    MathSciNet  Google Scholar 

  2. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1973).

  3. V. A. Borovikov and B. E. Kinber, Geometric Theory of Diffraction (Svyaz’, Moscow, 1978; Institute of Electrical Engineers, London, 1994).

    MATH  Google Scholar 

  4. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960), Vol. 2.

  5. N. V. Tsepelev, J. Sov. Math. 11 (3), 497 (1979).

    Article  Google Scholar 

  6. H. Bateman and A. Erdélyi, Higher Transcendental Functions (R. E. Krieger Pub. Co., Malabar, Fla., 1981; Nauka, Moscow, 1973), Vol. 2.

  7. A. Popov, A. Ladyzhensky (Brodskaya), and S. Khozioski, Russ. J. Math. Phys. 16 (2), 296 (2009).

    Article  MathSciNet  Google Scholar 

  8. P. Ya. Ufimtsev, Theory of Edge Diffraction in Electromagnetics (BINOM. Laboratoriya Znanii, Moscow, 2012; Tech Science Press, Encino, 2003).

  9. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon Press, Oxford, 1975).

  10. G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves (Peter Peregrinus Ltd, 1986).

  11. L. Kaminetzky and J. B. Keller, SIAM J. Appl. Mat. 22 (1), 109 (1972).

    Article  Google Scholar 

  12. Z. M. Rogoff and A. P. Kiselev, Wave Motion 33 (2), 183 (2001).

    Article  Google Scholar 

  13. E. A. Zlobina and A. P. Kiselev, Wave Motion 96, 102571 (2020).

    Article  MathSciNet  Google Scholar 

  14. E. A. Zlobina and A. P. Kiselev, St. Petersburg Math. J. 33 (2), 207 (2022).

    Article  MathSciNet  Google Scholar 

  15. E. A. Zlobina, Zap. Nauchn. Sem. POMI 493, 169 (2020).

    MathSciNet  Google Scholar 

  16. E. A. Zlobina and A. P. Kiselev, J. Commun. Technol. Electron. 67 (2), 130 (2022).

    Article  Google Scholar 

  17. E. A. Zlobina, Zap. Nauchn. Sem. POMI 506, 43 (2021).

    MathSciNet  Google Scholar 

  18. A. V. Popov, Sov. Phys. Acoust. 19 (4), 375 (1974).

    Google Scholar 

  19. V. A. Fock, Electromagnetic diffraction and propagation problems (Sovetskoe Radio, Moscow, 1970; Pergamon Press, London, 1965).

  20. A. S. Kryukovskii, D. S. Lukin, E. A. Palkin, and D. S. Rastyagaev, J. Commun. Technol. Electron. 51, 1087 (2006).

    Article  Google Scholar 

  21. A. S. Kryukovskii, Uniform Asymptotic Theory of Edge and Corner Wave Catastrophes (Ros. Novyi Univ., Moscow, 2013) [in Russian].

  22. E. A. Zlobina, Mat. Zametki 114 (4), 347 (2023).

  23. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Nauka, Moscow, 1972; Alpha Science, Oxford, 2009) .

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are indebted to the participants of the All-Russian Seminar “Mathematical Modeling of Wave Processes” (Russian New University, Moscow) and personally to D.S. Lukin, A.S. Kryukovsky, E.A. Palkin, V.T. Polyakov, and A.V. Popov for a helpful discussion of the results.

Funding

The work was supported by the Russian Science Foundation, grant no.: 22-21-00557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zlobina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlobina, E.A., Kiselev, A.P. Fresnel-Type Transition Zones. J. Commun. Technol. Electron. 68, 639–648 (2023). https://doi.org/10.1134/S1064226923060190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923060190

Navigation