Skip to main content
Log in

Implementation of the Maximum Bandwidth Ratio of Satellite Radio Communication Systems under the Conditions for Intramodal Dispersion of Transionospheric Radio Channels

  • ON THE 85TH ANNIVERSARY OF DMITRII SERGEEVICH LUKIN
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of significant extension of the band of the transionospheric radio channel to the maximum possible values is solved to improve the efficiency of satellite communication systems. Hardware and software are created to suppress the group delay dispersion using methods of data mining for experimental diagnostics of a transionospheric communication line. Algorithms and tools for intelligent sensory diagnostics of wideband radio channels with adaptation to dispersion variability are developed. In the absence of adaptation, it is possible to create radio channels of undistorted transmission with a bandwidth ratio of no greater than 4.5%, while adaptation to dispersion variability makes it possible to increase the bandwidth ratio to 11.5%. The greatest bandwidth ratio (20–25%) for dispersion-free transmission can be achieved with the aid of adaptive inverse filtering of the channel frequency response in combination with such intelligent methods as equalization with error, machine learning of channel equalizer, and big data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. V. Ivanov, V. A. Ivanov, A. A. Kislitsyn, and M. I. Ryabova, Vestn. Povolzh. Gos. Tekhnol. Univ., Ser. Radiotekh. i Infokomm. Sist., No. 3, 14 (2021). https://doi.org/10.25686/2306-2819.2021.3.14

  2. W. Furman, J. Nieto, and E. Koski, in Proc. 10th Nordic Conf. on HF Communications, At Faro, 2013, p. 4.

  3. D. V. Rastyagaev, E. A. Palkin, D. S. Lukin, et al., Izv. Vyssh. Uchebn. Zaved. Radiofiz. 64, 590 (2021).

    Article  Google Scholar 

  4. Yu. I. Bova, A. S. Kryukovskii, B. G. Kutuza, and D. S. Lukin, J. Commun. Technol. Electron. 64, 740 (2019).

    Article  Google Scholar 

  5. Yu. I. Bova, A. S. Kryukovskii, and D. S. Lukin, T‑Comm: Telekomm. & Transp. 12 (12), 22 (2018).

    Google Scholar 

  6. D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, and V. V. Ovchinnikov, Vestn. Povolzh. Gos. Tekhnol. Univ., Ser. Radiotekh. i Infokomm. Sist., No. 1, 6 (2021). https://doi.org/10.25686/2306-2819.2021.1.6

  7. V. A. Ivanov, D. V. Ivanov, N. V. Ryabova, et al., Radio Sci. 54 (1), 34 (2018). https://doi.org/10.1029/2018RS006636

    Article  Google Scholar 

  8. V. V. Ovchinnikov and D. V. Ivanov, in Proc. 33 General Assembly and Sci. Symp. Int. Union of Radio Sci. 2020, p. 1. https://doi.org/10.23919/URSIGASS49373.2020.9232379

  9. “Federal Communications Commission. Revision of part 15 of the commission’s rules regarding ultra wideband transmission systems. First report and order. FCC 02 48,” (Washington, DC, Feb., 2002). https:// www.fcc.gov/document/revisionpart-15-commissions-rules-regarding-ultra-wideband.

  10. D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, and V. V. Ovchinnikov, in Proc. 2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Arkhangelsk. 29 Jun.–1 Jul. N.Y.: IEEE, 2022, p. 9840991. https://doi.org/10.1109/SYNCHROINFO55067.2022.9840991

  11. D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, and V. V. Ovchinnikov, Radiotekhnika 86 (11), 166 (2022). https://doi.org/10.18127/j00338486-202211-23

    Article  Google Scholar 

  12. D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, et al., in Atmosphere, Ionosphere, Safety (AIS-2018), (Proc. VI Int. Conf., Kaliningrad, 2018) (Baltic Federal Univ. im. Kanta, Kaliningrad, 2018), Vol. 1, p. 81.

  13. Yu. V. Yasyukevich, A. A. Myl’nikova, V. V. Dem’yanov, et al., Vestn. Povolzh. Gos. Tekhnol. Univ., Ser. Radiotekh. i Infokomm. Sist., No. 3, 18 (2013).

  14. A. A. Kislitsin, N. V. Ryabova, and N. A. Konkin, in Proc. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Svetlogorsk, July 1–3, 2020 (IEEE, New York, 2020), p. 9166091. https://doi.org/10.1109/SYNCHROINFO49631.2020.9166091

    Book  Google Scholar 

  15. A. A. Kislitsyn, Vestn. Povolzh. Gos. Tekhnol. Univ., Ser. Radiotekh. i Infokomm. Sist., No. 3, 6 (2019).

  16. D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, et al., in Proc. 12th Eur. Conf. on Antennas and Propagation (EuCAP 2018), London, Apr. 9–13 (IEEE, New York, 2018), Article No. cp.2018.0473. https://doi.org/10.1049/cp.2018.0474

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-00622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kislitsyn.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.V., Ivanov, V.A., Ryabova, N.V. et al. Implementation of the Maximum Bandwidth Ratio of Satellite Radio Communication Systems under the Conditions for Intramodal Dispersion of Transionospheric Radio Channels. J. Commun. Technol. Electron. 68, 666–673 (2023). https://doi.org/10.1134/S1064226923060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923060049

Navigation