Skip to main content
Log in

Magnetic Isolated Vircator with a Magnetic Mirror on a Prelimit Electron Beam: Features of Beam Dynamics and Superhigh-Frequency Characteristics

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A relativistic magnetically isolated vircator with a magnetic mirror on a prelimit electron beam is proposed. Its computer simulation has been carried out. The phase dynamics of an electron beam in a vircator has been studied. It is shown that a number of virtual cathodes appear in the beam after the beam is reflected from the magnetic mirror. The output microwave characteristics are calculated: the average power and the spectral composition of generation, containing a set of narrow spectral lines and their harmonics. The effect of the mirror ratio on the average output power and on the frequencies of the spectral lines is studied. It is found that the power increases with the growth of the mirror ratio. The frequencies of some spectral lines increase with the mirror ratio, while the frequencies of other lines do not depend on this ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. R. Platt, B. Anderson, J. Christofferson, et al., Appl. Phys. Lett. 54 (13), 1215 (1989). https://doi.org/10.1063/1.100719

    Article  Google Scholar 

  2. G. A. Huttlin, M. S. Bushell, D. B. Conrad, et al., IEEE Trans. Plasma Sci. 18 (3), 618 (1990). https://doi.org/10.1109/27.55935

    Article  Google Scholar 

  3. H. Sze, D. Price, and B. Harteneck, J. Appl. Phys. 67 (5), 2278 (1990). https://doi.org/10.1063/1.345521

    Article  Google Scholar 

  4. V. D. Selemir, A. E. Dubinov, N. V. Stepanov, et al., Antenny, No. 3, 6 (2001).

    Google Scholar 

  5. A. N. Didenko, A. P. Arzin, A. G. Zherlitsyn, et al., Relativistic High-Frequency Electronics (Collection of Scientific Articles) (IPF AN SSSR, Gor’kii, 1984), No. 4, p. 104. https://ipfran.ru/api/elibrary/11573/4.pdf.

  6. A. N. Didenko, V. P. Grigor’ev, and A. G. Zherlitsyn, Plasma Elecktronics (Collection of Scientific Articles) (Naukova Dumka, Kiev, 1989), p. 112 [in Russian].

    Google Scholar 

  7. R. F. Hoeberling and M. V. Fazio, IEEE Trans. Electromagn. Compat. 34 (3), 252 (1992). https://doi.org/10.1109/15.155837

    Article  Google Scholar 

  8. A. A. Rukhadze, S. D. Stolbetsov, and V. P. Tarakanov, J. Commun. Technol. Electron. 37, 385 (1992).

    Google Scholar 

  9. A. E. Dubinov and V. D. Selemir, J. Commun. Technol. Electron. 47, 575 (2002).

    Google Scholar 

  10. V. D. Selemir, A. E. Dubinov, V. V. Voronin, and V. S. Zhdanov, IEEE Trans. Plasma Sci. 48 (6), 1860 (2020).

    Article  Google Scholar 

  11. L. S. Bogdankevich and A. A. Rukhadze, Usp. Fiz. Nauk. 103, 609 (1971). https://doi.org/10.1070/PU1971v014n02ABEH004456

    Article  Google Scholar 

  12. A. E. Dubinov and V. P. Tarakanov, Tech. Phys. 65, 1002 (2020). https://doi.org/10.1134/S1063784220060080

    Article  Google Scholar 

  13. A. E. Dubinov and V. P. Tarakanov, Plasma Phys. Rep. 46, 570 (2020). https://doi.org/10.1134/S1063780X20040029

    Article  Google Scholar 

  14. A. E. Dubinov, J. Commun. Technol. Electron. 45, 792 (2000).

    Google Scholar 

  15. M. I. Fuks and E. Schamiloglu, Phys. Rev. Lett. 122, 224801 (2019). https://doi.org/10.1103/PhysRevLett.122.224801

    Article  Google Scholar 

  16. J. G. Leopold, Ya. E. Krasik, Y. P. Bliokh, and E. Schamiloglu, Phys. Plasmas 27, 103102 (2020). https://doi.org/10.1063/5.0022115

    Article  Google Scholar 

  17. N. A. Nikolov, K. G. Kostov, I. P. Spasovsky, and V. A. Spasov, Electron. Lett. 24 (23), 1445 (1988).

    Article  Google Scholar 

  18. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Res. Associates, Springfield, 1992).

    Google Scholar 

  19. N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, et al., Phys. Rev. Lett. 119, 034801 (2017). https://doi.org/10.1103/PhysRevLett.119.034801

    Article  Google Scholar 

  20. V. P. Tarakanov and E. G. Shustin, Plasma Phys. Rep. 33, 130 (2007). https://doi.org/10.1134/S1063780X07020067

    Article  Google Scholar 

  21. S. D. Korovin, G. A. Mesyats, I. V. Pegel, et al., IEEE Trans. Plasma Sci. 28 (3), 485 (2000). https://doi.org/10.1109/27.887654

    Article  Google Scholar 

  22. A. E. Dubinov, V. D. Selemir, and V. P. Tarakanov, Plasma Phys. Rep. 46, 1108 (2020). https://doi.org/10.1134/S1063780X20110021

    Article  Google Scholar 

  23. A. E. Dubinov and V. P. Tarakanov, Laser Particle Beams 35 (2), 362 (2017). https://doi.org/10.1017/S0263034617000283

    Article  Google Scholar 

  24. A. E. Dubinov, V. D. Selemir, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 49 (6), 1834 (2021). https://doi.org/10.1109/TPS.2021.3080987

    Article  Google Scholar 

  25. A. E. Dubinov, S. K. Saikov, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 48 (1), 141 (2020). https://doi.org/10.1109/TPS.2019.2956833

    Article  Google Scholar 

  26. A. E. Dubinov and V. P. Tarakanov, J. Commun. Technol. Electron. 67, 675 (2022). https://doi.org/10.31857/S0033849422050059

    Article  Google Scholar 

  27. A. M. Ignatov and V. P. Tarakanov, Phys. Plasmas 1 (3), 741 (1994). https://doi.org/10.1063/1.870819

    Article  Google Scholar 

  28. A. E. Dubinov, Pis’ma Zh. Tekh. Fiz. 23 (22), 29 (1997). https://doi.org/10.1134/1.1261915

    Article  Google Scholar 

  29. S. Ya. Belomyttsev, A. A. Grishkov, S. A. Kitsanov, S. D. Korovin, S. D. Polevin, V. V. Ryzhov, and A. P. Yachny, Tech. Phys. Lett. 31, 982 (2005).https://doi.org/10.1134/1.2136972

  30. V. N. Barabanov, A. E. Dubinov, M. V. Loiko, S. K. Saikov, V. D. Selemir, and V. P. Tarakanov, Plasma Phys. Rep. 38, 169 (2012). https://doi.org/10.1134/S1063780X12010023

    Article  Google Scholar 

  31. E. N. Egorov, A. A. Koronovskii, S. A. Kurkin, and A. E. Hramov, Plasma Phys. Rep. 39, 925 (2013). https://doi.org/10.1134/S1063780X13110044

    Article  Google Scholar 

  32. A. E. Dubinov, A. G. Petrik, S. A. Kurkin, et al., Phys. Plasmas 23, 042105 (2016). https://doi.org/10.1063/1.4945644

    Article  Google Scholar 

  33. A. E. Dubinov, S. K. Saikov, and V. P. Tarakanov, Phys. Wave Phenom. 25 (3), 238 (2017). https://doi.org/10.3103/S1541308X17030128

    Article  Google Scholar 

  34. J. G. Leopold, Ya. E. Krasik, Y. P. Bliokh, and E. Schamiloglu, Phys. Plasmas 27, 103102-1 (2020). https://doi.org/10.1063/5.0022115

  35. C. S. Hwang, M. W. Wu, P. S. Song, and W. S. Hou, J. Appl. Phys. 69, 1247 (1991). https://doi.org/10.1063/1.347310

    Article  Google Scholar 

  36. R. Verma, R. Shukla, S. K. Sharma, et al., IEEE Trans. Electron. Devices 61 (1), 141 (2014). https://doi.org/10.1109/TED.2013.2288310

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-790.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Dubinov or H. N. Kolesov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Kolesov, H.N., Selemir, V.D. et al. Magnetic Isolated Vircator with a Magnetic Mirror on a Prelimit Electron Beam: Features of Beam Dynamics and Superhigh-Frequency Characteristics. J. Commun. Technol. Electron. 68, 595–600 (2023). https://doi.org/10.1134/S1064226923050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923050078

Navigation