Skip to main content
Log in

Dual-Mode Single-Input Three-Output Multifunction Filter and Quadrature Oscillator Consisting of Two Voltage Differencing Transconductance Amplifiers and Two Grounded Capacitors

  • THEORY OF RADIO CIRCUITS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present the circuit configuration that can perform as a dual-mode (i.e., both voltage-mode and current-mode) multifunction filter as well as a dual-mode quadrature oscillator by slightly modifying the design. The presented configuration includes only two voltage differencing transconductance amplifiers and two grounded capacitors, resulting in a resistor-less construction. The dual-mode multifunction filter with one input and three outputs provides three standard biquadratic filter functions: highpass, bandpass, and lowpass, as well as independent electronic adjustment of its quality factor. The circuit can also be used to implement a dual-mode quadrature oscillator with orthogonal electronic control of the oscillation condition and the oscillation frequency. Simulation results based on 0.25-μm level-7 TSMC CMOS technology parameters are used to evaluate the behavior of the proposed dual-mode multifunction biquad and quadrature oscillator circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. S. Minaei and M. A. Ibrahim, Int. J. Circuit Theory Appl. 37, 793 (2009).

    Article  Google Scholar 

  2. N. Pandey, S. K. Paul, and S. B. Jain, Analog Integr. Circ. Sig. Process. 58, 171 (2009).

    Google Scholar 

  3. W. Tangsrirat and O. Channumsin, Radioengineering 20, 905 (2011).

    Google Scholar 

  4. J. Satansup, and W. Tangsrirat, Radioengineering 20, 650 (2011).

    Google Scholar 

  5. R. Pandey, N. Pandey, S. K. Paul, A. Singh, B. Sriram, and K. Trivedi, Adv. Electr. Electron. Eng. 10, 337 (2012).

    Google Scholar 

  6. O. Channumsin, T. Pukkalanun, and W. Tangsrirat, Microelectron. J., 43, 555 (2012).

    Article  Google Scholar 

  7. W. Jaikla, F. Khateb, S. Siripongdee, P. Supavarasuwat, P. Suwanjan, Int. J. Electron. Commun. (AEÜ) 67, 1005 (2013).

    Article  Google Scholar 

  8. A. Yesil and F. Kacar, Radioengineering 22, 1016 (2013).

    Google Scholar 

  9. J. Satansup, T. Pukkalanun, and W. Tangsrirat, Circuits Syst. Signal Process. 32, 945 (2013).

    Article  Google Scholar 

  10. W. Tangsrirat, O. Channumsin, and T. Pukkalanun, Microelectron. J. 44, 210 (2013).

    Article  Google Scholar 

  11. J. W. Horng and Indian J. Pure Appl. Phys. 20, 87 (2013).

    Google Scholar 

  12. K. K. Abdalla, Circuits Syst. 4, 83 (2013).

    Article  Google Scholar 

  13. D. Prasad, D. R. Bhaskar, and M. Srivastava, Circuits Syst. 4, 29 (2013).

    Article  Google Scholar 

  14. W. Tangsrirat, O. Channumsin, and T. Pukkalanun, Indian J. Pure Appl. Phys. 51, 516 (2013).

    Google Scholar 

  15. W. Jaikla, D. Biolek, S. Siripongdee, and J. Bajer, Radioengineering 23, 914 (2014).

    Google Scholar 

  16. D. Prasad, M. Srivastava, and D. R. Bhaskar, Int. Sch. Res. Network 2014, 4 pages (2014).

  17. S. V. Singh, R. S. Tomar, and D. S. Chauhan, Int. J. Eng. Trans. B: Appl., 28, 1738 (2015).

    Google Scholar 

  18. J. Jerabek, J. Dvorak, R. Sotner, B. Metin, and K. Vrba, Adv. Electr. Comput. Eng. 16, 31 (2016).

    Article  Google Scholar 

  19. R. Pandey, N. Pandey, and N. Singhal, J. Eng. 2016, 10 pages (2016).

  20. N. Roongmuanpha, T. Pukkalanun, and W. Tangsrirat, Eng. Rev. 41, 76 (2021).

    Google Scholar 

  21. D. Nand and N. Pandey, Arab. J. Sci. Eng. 43, 3011 (2018).

    Article  Google Scholar 

  22. K. Garradhi, N. Hassen, T. Ettaghzouti, and K. Besbes, Int. J. Electron. Commun. (AEÜ) 83, 168 (2018).

    Article  Google Scholar 

  23. S. V. Singh and C. Shankar, J. Electr. Syst. 15, 249 (2019).

    Google Scholar 

  24. C. Shankar and S. V. Singh, Indian J. Pure Appl. Phys. 57, 52 (2019).

    Google Scholar 

  25. M. A. Albrni, M. Faseehuddin, J. Sampe, and S. H. M. Ali, Informacije MIDEM 49, 169 (2019).

    Google Scholar 

  26. P. Huaihongthong, A. Chaichana, P. Suwanjan, S. Siripongdee, W. Sunthonkanokpong, P. Supavarasuwat, Winai Jaikla, and Fabian Khateb, Int. J. Electron. Commun. (AEÜ) 83, 13 (2019).

    Article  Google Scholar 

  27. M. Siripruchyanun and W. Jaikla, Adv. Electr. Electron. Eng. 18, 242 (2020).

    Google Scholar 

  28. S. Roy, T. K. Paul, S. Maiti, and R. R. Pal, Int. J. Eng. Technol. Innov. 11, 146 (2021).

    Article  Google Scholar 

  29. A. Lahiri, IEICE Electron. Express 6, 135 (2009).

    Article  Google Scholar 

  30. Y. Li, Radioengineering 19, 667 (2010).

    Google Scholar 

  31. W. Jaikla, M. Siripruchyanun, and A. Lahiri, Microelectron. J. 42, 135 (2011).

    Article  Google Scholar 

  32. D. Prasad, M. Srivastava, and D. R. Bhaskar, Circuits and Systems 4, 169 (2013).

    Article  Google Scholar 

  33. N. Herencsar, R. Sotner, J. Koton, J. Misurec, and K. Vrba, Electron. Electr. Eng. 19, 87 (2013).

    Google Scholar 

  34. H. P. Chen, Sci. World J., 2014, 8 pages (2014).

  35. M. Srivastava, D. Prasad, and D. R. Bhaskar, Contemp. Eng. Sci. 7, 1501 (2014).

    Article  Google Scholar 

  36. B. Chaturvedi and J. Mohan, Istanb. Univ. – J. Electr. Electron. Eng. 15, 1897 (2015).

    Google Scholar 

  37. M. Srivastava and D. Prasad, Adv. Electr. Electron. Eng. 14, 168 (2016).

    Google Scholar 

  38. W. Tangsrirat, Informacije MIDEM 46, 130 (2016).

    Google Scholar 

  39. W. Tangsrirat, Indian J. Pure Appl. Phys. 55, 254 (2017).

    Google Scholar 

  40. K. L. Pushkar, Adv. Electr. Electron. Eng. 15, 799 (2017).

    Google Scholar 

  41. A. Yesil and F. Kacar, Istanb. Univ. – J. Electr. Electron. Eng. 18, 6 (2018).

    Google Scholar 

  42. O. Channumsin and W. Tangsrirat, Recent Adv. Electr. Electron. Eng. 12, 439 (2019).

    Google Scholar 

  43. K. Banerjee, D. Singh, and S. K. Paul, Analog Integr. Circuits Signal Process. 100, 459 (2019).

    Article  Google Scholar 

  44. W. Tangsrirat, T. Pukkalanun, and W. Surakampontorn, Act. Passiv. Electron. Compon. 2008, 6 pages (2008).

  45. D. Prasad and D. R. Bhaskar, Int. Sch. Res. Notices 2012, 5 pages (2012).

  46. M. Gupta and T. S. Arora, Adv. Electr. Electron. Eng. 15, 833 (2017).

    Google Scholar 

  47. T. S. Arora, B. Rohil, and S. Gupta, J. Circuits, Syst. Comput. 28, 1950181 (2019).

    Google Scholar 

  48. M. Kumngern, E. Wareechol, and P. Phasukkit, Int. J. Electron. Commun. (AEÜ) 94, 69 (2018).

    Article  Google Scholar 

  49. W. Tangsrirat, J. Commun. Technol. Electron. 63, 1418 (2018).

    Article  Google Scholar 

  50. S. F. Wang, H. P. Chen, Y. Ku, and C. L. Lee, Electronics 9, 1493 (2020).

    Article  Google Scholar 

  51. S. F. Wang, H. P. Chen, Y. Ku, and M. X. Zhong, Sensors 20, 6681 (2020).

    Article  Google Scholar 

  52. W. Tangsrirat, T. Pukkalanun, and O. Channumsin, Informacije MIDEM 50, 125 (2020).

    Google Scholar 

  53. D. Biolek, R. Senani, V. Biolkova, and Z. Kolka, Radioengineering 17, 15 (2008).

    Google Scholar 

  54. A. F. Arbel and L. Goldminz, Analog Integr. Circ. Sig. Process. 2, 243 (1992).

    Google Scholar 

Download references

Funding

This work was supported by the Rajamangala University of Technology Isan, contract no. ENG17/66. The support provided in part by the School of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Channumsin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangsrirat, W., Channumsin, O., Unhavanich, S. et al. Dual-Mode Single-Input Three-Output Multifunction Filter and Quadrature Oscillator Consisting of Two Voltage Differencing Transconductance Amplifiers and Two Grounded Capacitors. J. Commun. Technol. Electron. 68, 460–473 (2023). https://doi.org/10.1134/S1064226923040149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923040149

Keywords:

Navigation