Skip to main content
Log in

Electronic Structure and Properties of the Ground State of Fe–Pt Based Alloys

  • ON THE 90th ANNIVERSARY OF VLADIMIR GRIGOR’EVICH SHAVROV
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The properties of the ground state and the electronic structure of Fe2PtZ (Z = Ga, In, Ge, Si, Sn, Al) and FeRh1 – xPtx in the framework of the density functional theory implemented in the VASP software package alloys have been studied. Densities of electronic states for Fe2PtZ and FePt are obtained. It is shown that in Fe2PtIn and FePt high values of spin polarization are observed. It has been found that with increasing platinum concentration, the staggered antiferromagnetic spin configuration becomes unstable, and in the concentration range above 0.625, the antiferromagnetic configuration with layer-by-layer alternation of magnetic moment directions becomes advantageous. It was found that with a further increase in the platinum concentration, a ferromagnetic phase is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. K. J. Kim, S. J. Lee, T. A. Wiener, and D. W. Lynch, J. Appl. Phys. 89 (1), 244 (2001). https://doi.org/10.1063/1.1331064

    Article  Google Scholar 

  2. J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82 (17), 2859 (2003). https://doi.org/10.1063/1.1571232

    Article  Google Scholar 

  3. M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, et al., Cryogenics 32 (10), 867 (1992). https://doi.org/10.1016/0011-2275(92)90352-B

    Article  Google Scholar 

  4. R. R. Duplessis, R. A. Stern, and J. M. Mac Laren, J. Appl. Phys. 95 (11), 6589 (2004). https://doi.org/10.1063/1.1652422

    Article  Google Scholar 

  5. K. R. Coffey, M. A. Parker, and J. K. Howard, IEEE Trans. Magn. 31 (6), 2737 (1995). https://doi.org/10.1109/20.490108

    Article  Google Scholar 

  6. D. Weller, G. Parker, O. Mosendz, et al., J. Vac. Sci. Technol. 34, 060801 (2016). https://doi.org/10.1116/1.4965980

    Article  Google Scholar 

  7. M. Manekar and S. Roy, J. Phys. D: Appl. Phys. 44, 242001 (2011). https://doi.org/10.1088/0022-3727/44/24/242001

    Article  Google Scholar 

  8. V. Kuncser, R. Nicula, U. Ponkratz, et al., J. Alloys Compd. 386 (1), 8 (2005). https://doi.org/10.1016/j.jallcom.2004.04.139

    Article  Google Scholar 

  9. A. Chirkova, A. S. Volegov, D. S. Neznakhin, et al., Solid State Phenom. 190, 299 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.299

    Article  Google Scholar 

  10. S. Yuasa and H. Miyajima, Nucl. Instrum. Methods Phys. Res. Sec. B 76 (1–4), 71 (1993). https://doi.org/10.1016/0168-583X(93)95136-S

    Article  Google Scholar 

  11. K. Takizawa, T. Ono, and H. Miyajima, J. Magn. Magn. Mater. 226, 572 (2001). https://doi.org/10.1016/S0304-8853(00)01296-8

    Article  Google Scholar 

  12. J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33 (3), 1343 (1962). https://doi.org/10.1063/1.1728721

    Article  Google Scholar 

  13. M. R. Ibarra and P. A. Algarabel, Phys. Rev. 50 (6), 4196 (1994). https://doi.org/10.1103/PhysRevB.50.4196

    Article  Google Scholar 

  14. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, et al., Phys. Lett. A 148 (6–7), 363 (1990). https://doi.org/10.1016/0375-9601(90)90819-A

    Article  Google Scholar 

  15. A. Chirkova, K. P. Skokov, L. Schultz, et al., Acta Mater. 106, 15 (2016). https://doi.org/10.1016/j.actamat.2015.11.054

    Article  Google Scholar 

  16. A. M. Aliev, A. B. Batdalov, L. N. Khanov, et al., Appl. Phys. Lett. 109 (20), 202407 (2016). https://doi.org/10.1063/1.4968241

    Article  Google Scholar 

  17. O. O. Pavlukhina, V. V. Sokolovskiy, and V. D. Buchelnikov, Mater. Today: Proc. 4 (3), 4642 (2017). https://doi.org/10.1016/j.matpr.2017.04.044

    Article  Google Scholar 

  18. O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, Phys. Solid State 60 (6), 1134 (2018). https://doi.org/10.21883/FTT.2018.06.45986.18M

    Article  Google Scholar 

  19. S. Ostanin, S. S. A. Razee, J. B. Staunton, et al., J. Appl. Phys. 93 (1), 453 (2003). https://doi.org/10.1063/1.1523147

    Article  Google Scholar 

  20. O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, J. Magn. Magn. Mater. 476, 325 (2019). https://doi.org/10.1016/j.jmmm.2018.12.095

    Article  Google Scholar 

  21. O. O. Pavlukhina, V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, J. Magn. Magn. Mater. 470, 69 (2019). https://doi.org/10.1016/j.jmmm.2017.11.052

    Article  Google Scholar 

  22. L. Hongzhi, Z. Zhiyong, M. Li, et al., J. Phys. D: Appl. Phys. 40 (22), 7121 (2007). https://doi.org/10.1088/0022-3727/40/22/039

    Article  Google Scholar 

  23. A. A. Mendonca, L. Ghivelder, J. F. Jurado, and A. M. Gomes, J. Magn. Magn. Mater. 531, 167965 (2020). https://doi.org/10.1016/j.jmmm.2021.167965

    Article  Google Scholar 

  24. O. O. Pavlukhina, V. D. Buchelnikov, and V. V. Sokolovskiy, Mat. Sci. Forum. 845, 138 (2016). https://doi.org/10.4028/www.scientific.net/MSF.845.138

    Article  Google Scholar 

  25. G. Kresse and J. Furthmuller, Phys. Rev. B 54 (16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  26. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

  27. G. Kresse, D. Joubert, Phys. Rev. B 59 (3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

  28. N. Zotov N., Intermetallics 16 (1), 113 (2008). https://doi.org/10.1016/j.intermet.2007.08.006

  29. G. Shirane, R. Nathans, C. W. Chen, Phys. Rev. 134 (6A), A1547 (1964). https://doi.org/10.1103/PhysRev.134.A1547

  30. M. P. Belov, A. B. Syzdykova, I. A. Abrikosov, Phys. Rev. B 101 (13), 134303 (2020). https://doi.org/10.1103/PhysRevB.101.134303

  31. M. A. Zagrebin, V. V. Sokolovskiy, V. D. Buchelnikov, J. Phys. D: Appl. Phys. 49 (35), 355004 (2016). https://doi.org/10.1088/0022-3727/49/35/355004

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-12-20032, Calculations of the Properties of Heusler alloys, within State Assignment no. 075-01493-23-00 (Calculations of the Properties of FeRh1 – xPtx alloys), as well as with the support of the Foundation for Advanced Scientific Research of Chelyabinsk State University (Calculations of Phase Stability).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Pavlukhina.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlukhina, O.O., Sokolovskiy, V.V. & Buchelnikov, V.D. Electronic Structure and Properties of the Ground State of Fe–Pt Based Alloys. J. Commun. Technol. Electron. 68, 436–440 (2023). https://doi.org/10.1134/S1064226923040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923040101

Navigation