Skip to main content
Log in

Inverse Magnetocaloric Effect in Mn5Si3 Compound

  • ON THE 90th ANNIVERSARY OF VLADIMIR GRIGOR’EVICH SHAVROV
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A direct method was used to study the magnetocaloric effect (MCE) for samples of the compound Mn5Si3 under adiabatic conditions in magnetic fields up to 2 T at cryogenic temperatures in the range from 25 to 125 K. According to the results of measurements, it is shown that at temperatures near the first-order metamagnetostructural phase transition from a noncollinear antiferromagnetic to a collinear antiferromagnetic state, both inverse and сonventional MCE are observed. The maximum value of the inverse MCE was ∆Tad = –0.27 K at initial temperature T0 = 55 K in a magnetic field of 2 T. Conventional MCE with maximum value ∆Tad = +0.23 K is observed at T0 = 70 K in a field of 2 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (Inst. Phys., Bristol, 2003). https://doi.org/10.1201/9781420033373

    Book  Google Scholar 

  2. T. Numazawaa, K. Kamiya, T. Utaki, and K. Matsumoto, Supercond. and Cryogenics 15, 1 (2013). https://doi.org/10.9714/psac.2013.15.2.001

    Article  Google Scholar 

  3. A. P. Kamantsev, A. A. Amirov, Yu. S. Koshkid’ko, et al., Phys. Solid State 62, 160 (2020). https://doi.org/10.1134/S1063783420010151

    Article  Google Scholar 

  4. S. M. Konoplyuk, A. V. Mashirov, A. P. Kamantsev, et al., IEEE Trans. Magn. 54, 2500204 (2018). https://doi.org/10.1109/TMAG.2017.2761322

    Article  Google Scholar 

  5. P. J. von Ranke, N. A. de Oliveira, B. P. Alho, et al., J. Phys.: Cond. Matt. 21, 056004 (2009). https://doi.org/10.1088/0953-8984/21/5/056004

    Article  Google Scholar 

  6. T. Krenke, E. Duman, M. Acet, et al., Nature Mater. 4, 450 (2005). https://doi.org/10.1038/nmat1395

    Article  Google Scholar 

  7. Z. D. Han, D. H. Wang, C. L. Zhang, et al., Appl. Phys. Lett. 90, 042507 (2007). https://doi.org/10.1063/1.2435593

    Article  Google Scholar 

  8. T. Krenke, E. Duman, M. Acet, et al., Phys. Rev. B 75, 104414 (2007). https://doi.org/10.1103/PhysRevB.75.104414

    Article  Google Scholar 

  9. A. B. Batdalov, L. N. Khanov, A. V. Mashirov, et al., J. Appl. Phys. 129, 123901 (2021). https://doi.org/10.1063/5.0035280

    Article  Google Scholar 

  10. S. Chatterjee, S. Giri, S. Majumdar, and S. K. De, J. Phys. D: Appl. Phys. 42, 065001 (2009). https://doi.org/10.1088/0022-3727/42/6/065001

    Article  Google Scholar 

  11. R. R. Fayzullin, A. V. Mashirov, V. D. Buchelnikov, et al., J. Commun. Technol. Electron. 61, 1129 (2016). https://doi.org/10.1134/S1064226916100107

    Article  Google Scholar 

  12. P. Entel, V. V. Sokolovskiy, V. D. Buchelnikov, et al., J. Magn. Magn. Mater. 385, 193 (2015). https://doi.org/10.1016/j.jmmm.2015.03.003

    Article  Google Scholar 

  13. A. N. Vasiliev, O. Heczko, and O. S. Volkova, J. Phys. D: Appl. Phys. 43 (5) (2010). https://doi.org/10.1088/0022-3727/43/5/055004

  14. E. T. Dilmieva, Y. S. Koshkidko, A. P. Kamantsev, et al., IEEE Trans. Magn. 53 (11), 2503705 (2017). https://doi.org/10.1109/TMAG.2017.2702577

    Article  Google Scholar 

  15. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, et al., Bull. Russ, Acad. Sci. Phys. 78, 936 (2014). https://doi.org/10.3103/S106287381409010X

    Article  Google Scholar 

  16. L. Caron and X. F. Miao, J. C. P. Klaasse, et al., Appl. Phys. Lett. 103, 112404 (2013). https://doi.org/10.1063/1.4821197

    Article  Google Scholar 

  17. A. Tekgül, O. Çakır, M. Acet, et al., J. Appl. Phys. 118, 153903 (2015). https://doi.org/10.1063/1.4934253

    Article  Google Scholar 

  18. T. Tohei and H. Wada, J. Appl. Phys. 94 (3), 1800 (2003). https://doi.org/10.1063/1.1587265

    Article  Google Scholar 

  19. O. Çakır and M. Acet, Appl. Phys. Lett. 100 (20), 202404 (2012). https://doi.org/10.1063/1.4717181

  20. E. T. Dias, A. Das, A. Hoser, et al., J. Appl. Phys. 124 (15), 153902 (2018). https://doi.org/10.1063/1.5050655

    Article  Google Scholar 

  21. H. Zhang, R. Gimaev, B. Kovalev, et al., Phys. B: Cond. Matt. 558, 65 (2019). https://doi.org/10.1016/j.physb.2019.01.035

    Article  Google Scholar 

  22. J. Park, S. Jeong, and I. Park, Cryogenics 71, 82 (2015). https://doi.org/10.1016/j.cryogenics.2015.06.006

    Article  Google Scholar 

  23. J. Liu, T. Gottschall, K. P. Skokov, et al., Nature Mater. 11, 620 (2012). https://doi.org/10.1038/nmat3334

    Article  Google Scholar 

  24. V. K. Pecharsky, K. A. Gschneidner, Ya. Mudryk, and D. Paudyal, J. Magn. Magn. Mater. 321, 3541 (2009). https://doi.org/10.1016/j.jmmm.2008.03.013

    Article  Google Scholar 

  25. D. Guo, L. M. Moreno-Ramirez, C. Romero-Muniz, et al., Sci. China Mater. 64 (11), 2846 (2021). https://doi.org/10.1007/s40843-021-1711-5

    Article  Google Scholar 

  26. Q. Y. Ren, W. D. Hutchison, J. L. Wand, et al., J. Alloys Compd. 693, 32 (2017). https://doi.org/10.1016/j.jallcom.2016.09.169

    Article  Google Scholar 

  27. G. H. Lander, P. J. Brown, and J. B. Forsyth, Proc. Phys. Soc. 91 (2), 332 (1967). https://doi.org/10.1088/0370-1328/91/2/310

    Article  Google Scholar 

  28. A. Z. Menshikov, A. P. Vokhmyanin, and Yu. A. Dorofeev, Phys. Status Solidi B 158, 319 (1990). https://doi.org/10.1002/pssb.2221580132

    Article  Google Scholar 

  29. N. P. Sudakova., S. I. Kuznetsov, A. V. Mikhel’son, et al., Dokl. Akad. Nauk SSSR 228, 582 (1976).

    Google Scholar 

  30. R. F. Luccas, G. Sánchez-Santolino, A. Correa-Orellana, et al., J. Magn. Magn. Mater. 489, 165451 (2019). https://doi.org/10.1016/j.jmmm.2019.165451

    Article  Google Scholar 

  31. D. Songlin, W. Dagula, O. Tegus, et al., J. Alloys Compd. 334 (1-2), 242 (2002). https://doi.org/10.1016/S0925-8388(01)01776-5

    Article  Google Scholar 

  32. M. Gottschilch, O. Gourdon, J. Persson, et al., J. Mater. Chem. 22, 15275 (2012). https://doi.org/10.1039/C2JM00154C

    Article  Google Scholar 

  33. P. J. Brown, J. B. Forsyth, V. Nunez, and F. Tasset, J. Phys.: Cond. Matt. 4, 10025 (1992). https://doi.org/10.1088/0953-8984/4/49/029

    Article  Google Scholar 

  34. P. J. Brown and J. B. Forsyth, J. Phys.: Cond. Matt. 7, 7619 (1995). https://doi.org/10.1088/0953-8984/7/39/004

    Article  Google Scholar 

  35. M. R. Silva, P. J. Brown, and J. B. Forsyth, J. Phys.: Cond. Matt. 14, 8707 (2002). https://doi.org/10.1088/0953-8984/14/37/307

    Article  Google Scholar 

  36. Yu. S. Koshkid’ko, J. Ćwik, T. I. Ivanova, et al., J. Magn. Magn. Mater. 433, 234 (2017). https://doi.org/10.1016/j.jmmm.2017.03.027

    Article  Google Scholar 

  37. A. S. Kuznetsov, A. V. Mashirov, A. M. Aliev, et al., Phys. Met. Metallogr. 123, 397 (2022). https://doi.org/10.1134/S0031918X2204007X

    Article  Google Scholar 

  38. J. Leciejewicz, B. Penc, A. Szytula, et al., Acta Physica Polonica A 113, 1193 (2008). https://doi.org/10.12693/APhysPolA.113.1193

    Article  Google Scholar 

  39. D. M. de Almeida, C. Bormio-Nunes, C. A. Nunes, et al., J. Magn. Magn. Mater. 321, 2578 (2009). https://doi.org/10.1016/j.jmmm.2009.03.067

    Article  Google Scholar 

  40. H. J. Al-Kanani and J. G. Booth, J. Magn. Magn. Mater. 140, 1539 (1995). https://doi.org/10.1016/0304-8853(94)01157-5

    Article  Google Scholar 

  41. S. C. Das, S. Pramanick, and S. Chatterjee, J. Magn. Magn. Mater. 529, 167909 (2021). https://doi.org/10.1016/j.jmmm.2021.167909

    Article  Google Scholar 

  42. S. C. Das, K. Mandal, P. Dutta, et al., Phys. Rev. B 100, 024409 (2019). https://doi.org/10.1103/PhysRevB.100.024409

    Article  Google Scholar 

  43. X. Q. Zheng, Z. Y. Xu, B. Zhang, et al., J. Magn. Magn. Mater. 421, 448 (2017). https://doi.org/10.1016/j.jmmm.2016.08.048

    Article  Google Scholar 

  44. R. Rajivgandhi, J. Arout Chelvane, A. K. Nigam, et al., J. Alloys Compd. 815, 152659 (2020). https://doi.org/10.1016/j.jallcom.2019.152659

    Article  Google Scholar 

  45. A. P. Kamantsev, Yu. S. Koshkid’ko, S. V. Taskaev, et al., J. Supercond. Novel Magn. 35, 2181 (2022). https://doi.org/10.1007/s10948-022-06336-z

    Article  Google Scholar 

  46. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, Sov. Phys. Usp. 32, 649 (1989). https://doi.org/10.1070/PU1989v032n08ABEH002745

    Article  Google Scholar 

  47. N. Biniskos, K. Schmalzl, S. Raymond, et al., Phys. Rev. Lett. 120 (25), 257205 (2018). https://doi.org/10.1103/PhysRevLett.120.257205

    Article  Google Scholar 

  48. V. K. Pecharsky and K. A. Gschneidner, J. Appl. Phys. 86 (1), 565 (1999). https://doi.org/10.1063/1.370767

    Article  Google Scholar 

  49. O. Tegus, E. Bruck, L. Zhang, et al., Phys. B: Cond. Matt. 319, 174 (2022). https://doi.org/10.1016/S0921-4526(02)01119-5

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-79-10197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.S., Mashirov, A.V., Musabirov, I.I. et al. Inverse Magnetocaloric Effect in Mn5Si3 Compound. J. Commun. Technol. Electron. 68, 413–419 (2023). https://doi.org/10.1134/S1064226923040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923040083

Navigation