Skip to main content
Log in

Magnetocaloric Materials for Low-Temperature Magnetic Cooling

  • ON THE 90th ANNIVERSARY OF VLADIMIR GRIGOR’EVICH SHAVROV
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

State of research in the study of magnetocaloric materials based on rare-earth metals that are promising for application in the technology of low-temperature magnetic cooling is reviewed. Physical principles and characteristics of the magnetocaloric effect in materials based on rare-earth metals with low-temperature magnetic phase transitions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. W. F. Giauque, J. Am. Chem. Soc. 49 (8), 1864 (1927). https://doi.org/10.1021/ja01407a003

    Article  Google Scholar 

  2. K. P. Belov, The Magnetothermal Phenomena in Rare-Earth Magnetics (Nauka, Moscow, 1990).

    Google Scholar 

  3. S. A. Nikitin, Magnetic Properties of Rare-Earth Metals and Their Alloys (Mos. Gos. Univ., Moscow, 1989).

    Google Scholar 

  4. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (IOP Publ., Bristol, 2003).

    Book  Google Scholar 

  5. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, Sov. Phys. Usp. 32, 649 (1989). https://doi.org/10.1070%2FPU1989v032n08ABEH002745

    Article  Google Scholar 

  6. K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Progress Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

  7. V. Khovaylo and S. Taskaev, Encyclop. Smart Materials 5, 407 (2022). https://doi.org/10.1016/B978-0-12-815732-9.00132-7

    Article  Google Scholar 

  8. A. Kitanovski, Adv. Energy Mater. 10 (10), 1903741 (2020). https://doi.org/10.1002/aenm.201903741

  9. J. Lyubina, J. Phys. D: Appl. Phys. 50 (5), 053002 (2017). https://doi.org/10.1088/1361-6463/50/5/053002

  10. H. Zhang, R. Gimaev, B. Kovalev, et al., Physica B: Cond. Matt. 558, 65 (2019). https://doi.org/10.1016/j.physb.2019.01.035

    Article  Google Scholar 

  11. W. Liu, E. Bykov, S. Taskaev, et al., Appl. Mater. Today 29, 101624 (2022). https://doi.org/10.1016/j.apmt.2022.101624

  12. I. Park and S. Jeong, Cryogenics 88, 106 (2017). https://doi.org/10.1016/j.cryogenics.2017.09.008

    Article  Google Scholar 

  13. T. Numazawa, K. Kamiya, T. Utaki, and K. Matsumoto, Cryogenics 62, 185 (2014). https://doi.org/10.1016/j.cryogenics.2014.03.016

    Article  Google Scholar 

  14. H. Zhang, Y. J. Sun, E. Niu, et al., Appl. Phys. Lett. 103, 202412 (2013). https://doi.org/10.1063/1.4832218

    Article  Google Scholar 

  15. C. F. Gallo, J. Appl. Phys. 36 (11), 3410 (1965). https://doi.org/10.1063/1.1703007

    Article  Google Scholar 

  16. A. Feger, S. Yanosh, P. Petrovich, et al., Fiz. Nizk. Temp. 4, 1305 (1978).

    Google Scholar 

  17. R. Ratnalingam and J. B. Sousa, Phys. Lett. A 30 (1), 8 (1969). https://doi.org/10.1016/0375-9601(69)90007-3

    Article  Google Scholar 

  18. K. D. Timmerhaus and R. P. Reed, Cryogenic Engineering: Fifty Years of Progress (Springer Science & Business Media, New York, 2007).

    Book  Google Scholar 

  19. R. R. Gimaev, A. S. Komlev, A. S. Davydov, et al., Crystals 11 (2), 82 (2021). https://doi.org/10.3390/cryst11020082

    Article  Google Scholar 

  20. D. A. Suslov, V. G. Shavrov, V. V. Koledov, et al., Chelyab. Fiz.-Mat. Zh. 5, 612 (2020). https://doi.org/10.47475/2500-0101-2020-15420

    Article  Google Scholar 

  21. Y. Koshkid’ko, S. Pandey, A. Quetz, et al., J. Alloys Compd. 695, 3348 (2017). https://doi.org/10.1016/j.jallcom.2016.12.032

    Article  Google Scholar 

  22. S. M. Konoplyuk, A. V. Mashirov, A. P. Kamantsev, et al., IEEE Trans. Magn. 54 (1), 2500204 (2018). https://doi.org/10.1109/TMAG.2017.2761322

    Article  Google Scholar 

  23. V. V. Sokolovskii, D. V. Nachinova, V. D. Buchel’nikov, et al., Chelyab. Fiz.-Mat. Zh. 5, 493 (2020). https://doi.org/10.47475/2500-0101-2020-15409

    Article  Google Scholar 

  24. Yu. S. Koshkid’ko, Yu. G. Pastushenkov, E. M. Semenova, and T. I. Ivanova, Perspektiv. Mater. S6-1, 81 (2008).

  25. X. Q. Zheng, Z. Y. Xu, B. Zhang, F. X. Hu, and B. G. Shen, J. Magn. Magn. Mater. 421, 448 (2017). https://doi.org/10.1016/j.jmmm.2016.08.048

    Article  Google Scholar 

  26. Yu. S. Koshkid’ko, “Anisotropy of magnetocaloric effect of single crystals of the 3d- and 4f-metals compounds in the region of magnetic phase transitions,” PhD Dissertation (Phys.-Math) (Tver. Gos. Univ., Tver’, 2011).

  27. S. A. Nikitin, K. P. Skokov, Yu. S. Koshkid’ko, et al., Phys. Rev. Lett. 105, 137205 (2010). https://doi.org/10.1103/PhysRevLett.105.137205

    Article  Google Scholar 

  28. Y. S. Koshkid’ko, K. P. Skokov, Yu. G. Pastushenkov, et al., Solid State Phenomena 168–169, 134 (2011). https://doi.org/10.4028/www.scientific.net/SSP.168-169.134

    Article  Google Scholar 

  29. K. P. Skokov, Y. G. Pastushenkov, Y. S. Koshkid’ko, et al., J. Magn. Magn. Mater. 323, 447 (2011). https://doi.org/10.1016/j.jmmm.2010.09.044

    Article  Google Scholar 

  30. S. A. Nikitin, T. I. Ivanova, A. I. Zvonov, et al., Acta Mater. 161, 331 (2018). https://doi.org/10.1016/j.actamat.2018.09.017

    Article  Google Scholar 

  31. K. Wang, M. Zhang, J. Liu, et al., J. Appl. Phys. 125, 243901 (2019). https://doi.org/10.1063/1.5093708

    Article  Google Scholar 

  32. S. A. Nikitin, A. S. Andreenko, A. M. Tishin, et al., Phys. Met. Metallogr. 60, 56 (1985).

    Google Scholar 

  33. S. A. Nikitin, A. S. Andreenko, A. M. Tishin, et al., Phys. Met. Metallogr. 59, 104 (1985).

    Google Scholar 

  34. K. N. R. Taylor and M. I. Darby, Physics of Rare Earth Solids (Chapman & Hall, London, 1972; Mir, Moscow, 1974).

  35. C. B. Zimm, J. A. Barclay, H. H. Harkness, et al., Cryogenics 29, 937 (1989). https://doi.org/10.1016/0011-2275(89)90210-5

    Article  Google Scholar 

  36. C. B. Zimm, P. M. Ratzmann, J. A. Barclay, et al., Adv. Cryogenic Eng. Mater. A, B, 36, 763 (1990). https://doi.org/10.1007/978-1-4613-9880-6_99

  37. Y. S. Koshkid’ko, J. Cwik, T. I. Ivanova, et al., J. Magn. Magn. Mater. 433, 234 (2017). https://doi.org/10.1016/j.jmmm.2017.03.027

    Article  Google Scholar 

  38. Yu. S. Koshkid’ko, E. T. Dilmieva, A. P. Kamantsev, et al., J. Alloys Compd. 905, Article No. 164051 (2022). https://doi.org/10.1016/j.jallcom.2022.164051

    Article  Google Scholar 

  39. Y. S. Koshkid’ko, E. T. Dilmieva, J. Ćwik, et al., J. Alloys Compd. 798, 810 (2019). https://doi.org/10.1016/j.jallcom.2019.05.246

    Article  Google Scholar 

  40. Belov K.P., Effects of Paraprocess in Ferrimagnetics and Anti-Ferromagnetics (Fizmatlit, Moscow, 2001).

    Google Scholar 

  41. S. Yu. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, Jr., Phys. Rev. B 57, 3478 (1998). https://doi.org/10.1103/PhysRevB.57.3478

    Article  Google Scholar 

  42. V. K. Pecharsky and K. A. Gschneidner, Jr, J. Appl. Phys. 86 (1), 565 (1999). https://doi.org/10.1063/1.370767

    Article  Google Scholar 

  43. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, et al., Solid State Phenom. 233–234, 216 (2015). https://doi.org/10.4028/www.scientific.net/SSP.233-234.216

    Article  Google Scholar 

  44. A. M. Aliev, A. B. Batdalov, L. N. Khanov, et al., Appl. Phys. Lett. 109 (20), 202407 (2016). https://doi.org/10.1063/1.4968241

    Article  Google Scholar 

  45. B. R. Gopal, R. Chahine, and T. K. Bose, Rev. Sci. Instrum. 68, 1818 (1997). https://doi.org/10.1063/1.1147999

    Article  Google Scholar 

  46. J. Y. Liu, Z. G. Zheng, L. Lei, et al., Rev. Sci. Instrum. 91, 065102 (2020). https://doi.org/10.1063/1.5128949

    Article  Google Scholar 

  47. M. G. Zavareh, Y. Skourski, K. P. Skokov, et al., Phys. Rev. Appl 8, 014037 (2017). https://doi.org/10.1103/PhysRevApplied.8.014037

    Article  Google Scholar 

  48. T. Kihara, X. Xu, W. Ito, et al., Phys. Rev. B 90, 214409 (2014). https://doi.org/10.1103/PhysRevB.90.214409

    Article  Google Scholar 

  49. F. Cugini, D. Orsi, E. Brück, and M. Solzi, Appl. Phys. Lett. 113, 232405 (2018). https://doi.org/10.1063/1.5061929

    Article  Google Scholar 

  50. T. Gottschall, M. D. Kuz’min, K. P. Skokov, et al., Phys. Rev. B 99, 134429 (2019). https://doi.org/10.1103/PhysRevB.99.134429

    Article  Google Scholar 

  51. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, et al., J. Magn. Magn. Mater. 440, 70 (2017). https://doi.org/10.1016/j.jmmm.2016.12.063

    Article  Google Scholar 

  52. S. Khmelevskyi and P. Mohn, J. Phys.: Cond. Matt. 12 (45), 9453 (2000). https://doi.org/10.1088/0953-8984/12/45/308

    Article  Google Scholar 

  53. S. A. Nikitin and A. M. Tishin, Cryogenics 31 (3), 166 (1991). https://doi.org/10.1016/0011-2275(91)90171-R

    Article  Google Scholar 

  54. J. Ćwik, Y. Koshkid’ko, N. A. de Oliveira, et al., Acta Mater. 133, 230 (2017). https://doi.org/10.1016/j.actamat.2017.05.054

    Article  Google Scholar 

  55. P. J. von Ranke, N. A. de Oliveira, Costa M. V. Tovar, et al., J. Magn. Magn. Mater. 226, 970 (2001). https://doi.org/10.1016/S0304-8853(00)01162-8

    Article  Google Scholar 

  56. Yu. S. Dan’kov, V. V. Ivtchenko, A. M. Tishin, et al., Adv. Cryogenic Eng. Mater. 46, 397 (2000). https://doi.org/10.1007/978-1-4615-4293-3_51

    Article  Google Scholar 

  57. K. Matsumoto, K. Asamato, Y. Nishimura, et al., J. Phys.: Conf. Ser. 400, 052020 (2012). https://doi.org/10.1088/1742-6596/400/5/052020

    Article  Google Scholar 

  58. M. Patra, S. Majumdar, S. Giri, et al., J. Phys.: Cond. Matt. 26, 046004 (2014). https://doi.org/10.1088/0953-8984/26/4/046004

    Article  Google Scholar 

  59. P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner, Jr., Phys. Rev. B: 58 (18), 12110 (1998). https://doi.org/10.1103/PhysRevB.58.12110

    Article  Google Scholar 

  60. W. Zuo, F. Hu, J. Sun, and B. Shen, J. Alloys Compd. 575, 162 (2013). https://doi.org/10.1016/j.jallcom.2013.03.185

    Article  Google Scholar 

  61. J. Ćwik, Y. Koshkid’ko, K. Nenkov, et al., J. Alloys Compd. 735, 1088 (2018). https://doi.org/10.1016/j.jallcom.2017.11.194

    Article  Google Scholar 

  62. A. Tomokiyo, H. Yayama, H. Wakabayashi, et al., Adv. Cryogenic Eng. Mater. 32, 295 (1986).

    Article  Google Scholar 

  63. X. Q. Zheng, Z. Y. Xu, B. Zhang, et al., J. Magn. Magn. Mater. 421, 448 (2017). https://doi.org/10.1016/j.jmmm.2016.08.048

    Article  Google Scholar 

  64. T. I. Ivanova, S. A. Nikitin, G. A. Tskhadadze, et al., J. Alloys Compd. 592, 271 (2014). https://doi.org/10.1016/j.jallcom.2013.12.171

    Article  Google Scholar 

  65. M. A. Tishin, Handbook on Magnetic Materials 12, 395 (1999). https://doi.org/10.1016/S1567-2719(99)12008-0

    Article  Google Scholar 

  66. N. H. Duc and Anh D. T. Kim, J. Magn. Magn. Mater. 242, 873 (2002). https://doi.org/10.1016/S0304-8853(01)01328-2

    Article  Google Scholar 

  67. J. L. Llamazares, P. Ibarra-Gaytán, C. F. Sánchez-Valdés, et al., J. Rare Earths 38 (6), 612 (2020). https://doi.org/10.1016/j.jre.2019.07.011

    Article  Google Scholar 

  68. H. Oesterreicher and F. T. Parker, J. Appl. Phys. 55 (12), 4334 (1984). https://doi.org/10.1063/1.333046

    Article  Google Scholar 

  69. J. H. Belo, J. S. Amaral, A. M. Pereira, et al., Appl. Phys. Lett. 100, 242407 (2012). https://doi.org/10.1063/1.4726110

    Article  Google Scholar 

  70. S. Taskaev, V. Khovaylo, K. Skokov, et al., J. Appl. Phys. 127, 233906 (2020). https://doi.org/10.1063/5.0006281

    Article  Google Scholar 

  71. H. Wada, Y. Tanabe, M. Shiga, et al., J. Alloys. Compounds 316, 245 (2001). https://doi.org/10.1016/S0925-8388(00)01305-0

    Article  Google Scholar 

  72. K. A. Gschneidner, V. K. Pecharsky, and S. K. Malik, Adv. Cryogenics Eng. Mater. 42, 475 (1996). https://doi.org/10.1007/978-1-4757-9059-7_63

    Article  Google Scholar 

  73. J. Cwik, Y. Koshkid’ko, K. Nenkov, et al., Phys. Rev. B 103, 214429 (2021). https://doi.org/10.1103/PhysRevB.103.214429

    Article  Google Scholar 

  74. E. Bykov, W. Liu, K. Skokov, F. Scheibel, et al., Phys. Rev. Mater. 5, 095405 (2021). https://doi.org/10.1103/PhysRevMaterials.5.095405

    Article  Google Scholar 

  75. J. Ćwik, Y. Koshkid’ko, K. Nenkov, et al., J. Alloys. Compounds 859, 157870 (2021). https://doi.org/10.1016/j.jallcom.2020.157870

    Article  Google Scholar 

  76. B. P. Alho, P. H. O. Lopes, P. O. Ribeiro, et al., J. Magn. Magn. Mater. 449, 308 (2018). https://doi.org/10.1016/j.jmmm.2017.10.044

    Article  Google Scholar 

  77. N. A. de Oliveira and P. J. von Ranke, Solid State Commun. 144, 103 (2007). https://doi.org/10.1016/j.ssc.2007.08.018

    Article  Google Scholar 

  78. J. Ćwik, Y. Koshkid’ko, K. Nenkov, et al., Sci. Rep. 12, 12332 (2022). https://doi.org/10.1038/s41598-022-16738-7

    Article  Google Scholar 

  79. J. Ćwik, Y. Koshkid’ko, K. Nenkov, et al., Crystals 12 (7), 931 (2022). https://doi.org/10.3390/cryst12070931

    Article  Google Scholar 

  80. P. O. Ribeiro, B. P. Alho, T. S. T. Alvarenga, et al., J. Magn. Magn. Mater. 379, 112 (2015). https://doi.org/10.1016/j.jmmm.2014.12.023

    Article  Google Scholar 

  81. P. O. Ribeiro, B. P. Alho, T. S. T. Alvarenga, et al., J. Alloys. Compounds 563, 242 (2013). https://doi.org/10.1016/j.jallcom.2013.02.068

    Article  Google Scholar 

  82. J. Ćwik, Y. Koshkid’ko, M. Małecka, et al., J. Alloys. Compounds 886, 161295 (2021). https://doi.org/10.1016/j.jallcom.2021.161295

    Article  Google Scholar 

  83. J. L. Sánchez-Lamazares, J. Zamora, C. F. Sánchez-Valdés, and P. Álvarez-Alonso, J. Alloys. Compounds 831, 154779 (2020). https://doi.org/10.1016/j.jallcom.2020.154779

    Article  Google Scholar 

  84. T. Hashinomoto, T. Kuzuhara, K. Matsumoto, et al., IEEE Trans. Magn. 23 (5), 2847 (1987). https://doi.org/10.1109/TMAG.1987.1065717

    Article  Google Scholar 

  85. J. L. Sánchez Llamazares, P. Ibarra-Gaytán, C. F. Sánchez-Valdes, et al., Intermetallics 88, 41 (2017). https://doi.org/10.1016/j.intermet.2017.05.001

    Article  Google Scholar 

  86. J. S. Marcos, J. Rodriguez Fernandez, B. Chevalier, et al., J. Magn. Magn. Mater. 272, 579 (2004). https://doi.org/10.1016/j.jmmm.2003.11.225

    Article  Google Scholar 

  87. R. Rajivgandhi, J. Arout Chelvane., R. Nirmala, AIP Conf. Proc. 1832, 130059 (2017). https://doi.org/10.1063/1.4980779

    Article  Google Scholar 

  88. S. K. Karmakar, S. Giri, and S. Majumdar, J. Appl. Phys. 117, 193904 (2015). https://doi.org/10.1063/1.4921360

    Article  Google Scholar 

  89. P. Arora, P. Tiwari, V. G. Sathe, and M. K. Chattopadhyay, J. Magn. Magn. Mater. 321, 3278 (2009). https://doi.org/10.1016/j.jmmm.2009.05.062

    Article  Google Scholar 

  90. J. Cwik, Y. Koshkid’ko, N. Kolchugina, et al., Acta Mater. 173, 27 (2019). https://doi.org/10.1016/j.actamat.2019.04.056

    Article  Google Scholar 

  91. P. J. von Ranke, E. P. Nobrega, I. G. De Oliveira, et al., Phys. Rev. B: 63, 184406 (2001). https://doi.org/10.1103/PhysRevB.63.184406

    Article  Google Scholar 

  92. K. A. Gschneisdner, Jr. and V. K. Pecharsky, Annual Rev. Mater. Sci. 30, 387 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  Google Scholar 

  93. D. D. Mishin, Magnetic Materials (Vysshaya Shkola, Moscow, 1991).

    Google Scholar 

  94. G. S. Kandaurova, Sorosov. Obrazovat. Zh., No. 1, 100 (1997).

  95. A. Anand, M. Manjuladevi, R. K. Veena, et al., J. Magn. Magn. Mater. 528, 167810 (2021). https://doi.org/10.1016/j.jmmm.2021.167810

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Koshkid’ko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshkid’ko, Y.S., Dilmieva, E.T., Kamantsev, A.P. et al. Magnetocaloric Materials for Low-Temperature Magnetic Cooling. J. Commun. Technol. Electron. 68, 379–388 (2023). https://doi.org/10.1134/S106422692304006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692304006X

Navigation