Skip to main content
Log in

Magnetocaloric Effect in a Ni2.25Mn0.75Ga0.93Si0.07 Alloy

  • ON THE 90th ANNIVERSARY OF VLADIMIR GRIGOR’EVICH SHAVROV
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The results of a study of the magnetocaloric effect (MCE) in Ni2.25Mn0.75Ga0.93Si0.07 alloy are presented in the cast state and in the state after multi-axial isothermal forging (MIF) at 700°C and true degree of deformation e = 3.19. It is shown that as a result of MIF, the initial equiaxed microstructure is transformed into a bimodal one in which large grains 100–200 µm in size are surrounded by a layer of fine-grained microstructure. As a result of MIF, the range of martensitic transformation is slightly shifted to the region of low temperatures by about 5°C. The analysis of phase transformations in the region of room temperatures shows that the intervals of martensitic and magnetic phase transformations are superimposed on each other. The MCE value in a magnetic field of 1.8 T is 0.59ºC in the initial cast state, and as a result of forging it decreases to 0.55°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, et al., Phys. Lett. A 291 (2-3), 175 (2001). https://doi.org/10.1016/S0375-9601(01)00688-0

    Article  Google Scholar 

  2. A. Kamantsev, A. Mashirov, E. Dilmieva, et al., Phys. Procedia 82, 15 (2016). https://doi.org/10.1016/j.phpro.2016.05.004

    Article  Google Scholar 

  3. Z. Zhou, P. Wu, G. Ma, et al., J. Alloys Compd. 792, 399 (2019). https://doi.org/10.1016/j.jallcom.2019.04.038

    Article  Google Scholar 

  4. A. A. Mendonca, J. F. Jurado, S. J. Stuard, et al., J. Alloys Compd. 738, 509 (2018). https://doi.org/10.1016/j.jallcom.2017.12.197

    Article  Google Scholar 

  5. U. Gaitzsch, M. Potschke, S. Roth, et al., Acta Materialia 57 (2), 365 (2009). https://doi.org/10.1016/j.actamat.2008.09.017

    Article  Google Scholar 

  6. I. D. Rodionov, Yu. S. Koshkid’ko, J. Cwik, et al., JETP Letters 101, 385 (2015). https://doi.org/10.1134/S0021364015060107

    Article  Google Scholar 

  7. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, et al., J. Appl. Phys. 117, 163903 (2015). https://doi.org/10.1063/1.4918914

    Article  Google Scholar 

  8. A. M. Aliev, A. B. Batdalov, L. N. Khanov, et al., Phys. Solid State 62, 837 (2020). https://doi.org/10.1134/S1063783420050030

    Article  Google Scholar 

  9. J. Yang, Z. Li, B. Yang, et al., J. Alloys Compd. 892, Article No. 162190 (2022). https://doi.org/10.1016/j.jallcom.2021.162190

    Article  Google Scholar 

  10. L. Zhang, J. Zhang, K. Li, et al., Acta Materialia 239, Article No. 118245 (2022). https://doi.org/10.1016/j.actamat.2022.118245

    Article  Google Scholar 

  11. A. A. Mendonca, L. Ghivelder, J. F. Jurado, and A. M. Gomes, J. Magn. Magn. Mater. 531, Article No. 167965 (2021). https://doi.org/10.1016/j.jmmm.2021.167965

    Article  Google Scholar 

  12. L. Wei, X. Zhang, W. Gan, et al., J. Alloys Compd. 874, Article No. 159755 (2021). https://doi.org/10.1016/j.jallcom.2021.159755

    Article  Google Scholar 

  13. J. Chen, L. Lei, and G. Fang, Mater. Today Commun. 28, Article No. 102706 (2021). https://doi.org/10.1016/j.mtcomm.2021.102706

    Article  Google Scholar 

  14. Y. Feng, J. Gao, M. Zhou, and H. Wang, J. Magn. Magn. Mater. 563, 169906 (2022). https://doi.org/10.1016/j.jmmm.2022.169906

    Article  Google Scholar 

  15. W. Gui, Y. Qu, Y. Cao, et al., J. Mater. Research & Technol. 19, 4998 (2022). https://doi.org/10.1016/j.jmrt.2022.07.018

    Article  Google Scholar 

  16. Y. Zhu, H. Xuan, J. Su, et al., Phys. Lett. A 451, Article No. 128374 (2022). https://doi.org/10.1016/j.physleta.2022.128374

    Article  Google Scholar 

  17. Yu. S. Koshkidko, E. T. Dilmieva, J. Cwik, et al., J. Alloys Compd. 798, 810 (2019). https://doi.org/10.1016/j.jallcom.2019.05.246

    Article  Google Scholar 

  18. F. Albertini, S. Besseghini, A. S. Bugaev, et al., J. Commun. Technol. Electron. 50, 638 (2006).

    Google Scholar 

  19. R. N. Imashev, Kh. Ya. Mulyukov, V. V. Koledov, and V. G. Shavrov, Phys.-Dokl. 400, 28 (2005). https://doi.org/10.1134/1.1862369

    Article  Google Scholar 

  20. H. Morawiec, T. Goryczka, A. Drdzen, et al., Solid State Phenomena 154, 133 (2009). https://doi.org/10.4028/www.scientific.net/ssp.154.133

    Article  Google Scholar 

  21. Yu. V. Kaletina, E. D. Greshnova, A. Yu. Kaletin, et al., Phys. Met. Metallogr. 120 (2), 171 (2019). https://doi.org/10.1134/S0031918X19020078

    Article  Google Scholar 

  22. V. G. Pushin, N. N. Kuranova, E. B. Marchenkova, and A. V. Pushin, Phys. Met. Metallogr. 121 (4), 330 (2020). https://doi.org/10.1134/S0031918X20040122

    Article  Google Scholar 

  23. V. G. Pushin, N. N. Kuranova, E. B. Marchenkova, and A. V. Pushin, Tech. Phys. 65, 602 (2020). https://doi.org/10.1134/S1063784220040179

    Article  Google Scholar 

  24. L. S. Wei, X. X. Zhang, M. F. Qian, et al., Mater. Des. 142, 329 (2018). https://doi.org/10.1016/j.matdes.2018.01.048

    Article  Google Scholar 

  25. L. Wei, X. Zhang, M. Qian, et al., Mater. Des. 112, 339 (2016). https://doi.org/10.1016/j.matdes.2016.09.076

    Article  Google Scholar 

  26. R. Chulist, W. Skrotzki, C.-G. Oertel, et al., Int. J. Mater. Res. 103, 575 (2012). https://doi.org/10.3139/146.110735

    Article  Google Scholar 

  27. L. Wei, X. Zhang, W. Gan, et al., Scripta Mater. 168, 28 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.009

    Article  Google Scholar 

  28. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, et al., in Proc. IOP Conf. Ser.: Materials Science and Engineering, 2018 (IOP, 2018), Vol. 447, p. 012024. https://doi.org/10.1088/1757-899X/447/1/012024

  29. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, et al., Mater. Phys. Mech. 40, (2), 201 (2018). https://doi.org/10.18720/MPM.4022018_8

  30. I. I. Musabirov, R. M. Galeyev, and I. M. Safarov, J. Magn. Magn. Mater. 514, 167160 (2020). https://doi.org/10.1016/j.jmmm.2020.167160

    Article  Google Scholar 

  31. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, et al., Phys. Solid State 60, 1061 (2018). https://doi.org/10.1134/S1063783418060240

    Article  Google Scholar 

  32. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, et al., Trans. Indian Inst. Met. 74, 2481 (2021). https://doi.org/10.1007/s12666-021-02349-9

    Article  Google Scholar 

  33. A. M. Aliev, A. B. Batdalov, and V. S. Kalitka, Zh. Eksp. Teor. Fiz. Pis’ma Red. 90, 663 (2009). doi.org/10.1134/S0021364009220068

    Google Scholar 

Download references

Funding

The study was supported by the state task of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences. The studies were carried out on the basis of the Center for Collective Use of Scientific Equipment of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences, “Structural and Physicomechanical Studies of Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Musabirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaifullin, R.Y., Gadzhiev, A.B., Aliev, A.M. et al. Magnetocaloric Effect in a Ni2.25Mn0.75Ga0.93Si0.07 Alloy. J. Commun. Technol. Electron. 68, 407–412 (2023). https://doi.org/10.1134/S1064226923040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923040022

Navigation