Skip to main content
Log in

Prospects for Infrared Luminescent Diagnostics of Superficially Located Neoplasms Using Ytterbium Porphyrin Complexes

  • APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS IN BIOLOGY AND MEDICINE
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we developed a promising technique for luminescent infrared (IR) diagnostics of neoplasms of visually and endoscopically accessible localization (dermatology, gynecology, dentistry) using ytterbium complexes of porphyrins. Possible mechanisms of accumulation of a pharmaceutical composition based on the ytterbium complex of 2,4-di(α-methoxyethyl)deuteroporphyrin IX (Yb-DMDP) in tumor tissues were studied. Studies on the pharmacokinetics and biodistribution of this substance in various organs and neoplasms of laboratory animals showed a significant selectivity of the accumulation of nanoparticles with ytterbium ions in tumors as early as 24 h after intravenous administration. For the purposes of luminescent IR diagnostics, a highly sensitive laser-fiber fluorimeter operating in the spectral range of 900–1100 nm was developed. Preclinical tests of the developed method of fluorescent IR cancer diagnostics were carried out and its prospects were shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. B. Ya. Narkevich, Medits. Fiz. 61, 82 (2014).

    Google Scholar 

  2. V. Tuchin, Lasers and Fiber Optics in Biomedical Researches (Sarat. Univ., Saratov, 1998) [in Russian].

    Google Scholar 

  3. S. Comby and J. Bunzli, Lanthanide Near-Infraredluminescence in Molecular Probes and Devices. Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science, Amsterdam, 2007).

    Google Scholar 

  4. V. Bulach, F. Sguerra, and M. W. Hosseini, Coord. Chem. Rev. 256, 1468 (2012).

    Article  Google Scholar 

  5. S. Achilefu, Nature Photonics 1, 496 (2005).

    Article  Google Scholar 

  6. Yu. Korovin and N. Rusakova, Rev. Inorg. Chem. 21 (3–4), 299 (2001).

    Article  Google Scholar 

  7. A. F. Mironov, Usp. Khimii 82, 333 (2013).

    Article  Google Scholar 

  8. M. I. Gaiduk, V. V. Grigoryants, A. F. Mironov, et al., J. Photochem. Photobiol., B: Biology 7 (1), 15 (1990).

    Google Scholar 

  9. A. V. Ivanov, V. D. Rumyantseva, K. S. Shchamkhalov, and I. P. Shilov, Laser Phys. 20, 2056 (2010).

    Article  Google Scholar 

  10. V. V. Gainov, R. I. Shaidullin, and O. A. Ryabushkin, Kvant. Elektron. 41, 637 (2011).

    Article  Google Scholar 

  11. Yu. V. Alekseev, V. D. Rumyantseva, I. P. Shilov, et al., Lazer. Medits., No. 2, 14 (2017).

  12. D. Zaak, A. Karl, R. Knüchel, H. Stepp, et al., BJU Int. 96, 217 (2005).

    Article  Google Scholar 

  13. I. P. Shilov, L. Yu. Kochmarev, and E. P. Novichikhin, Med. Tekhn., No. 6, 1 (2020).

  14. A. E. Shchelkunova, E. V. Boltukhina, V. D. Rumyantseva, et al., Makrogeterotsikly 12, 366 (2019).

    Google Scholar 

  15. V. M. Markushev, V. D. Rumyantseva, I. P. Shilov, and A. S. Gorshkova, Zh. Radioelektron., No. 8, (2018).

  16. A. V. Ivanov and V. G. Pevgov, Integral, No. 59, 6 (2011).

  17. G. L. Danielyan, V. D. Rumyantseva, K. S. Shamkhalov, et al., Zh. Neirokomp.: Razrab., Primen., No. 4, 53 (2012).

  18. Yu. V. Korovin, N. V. Rusakova, Yu. A. Popkov, and V. P. Dotsenko, Zh. Prikl. Spektrosk. 69, 732 (2002).

    Google Scholar 

  19. P. P. Mishra, S. Patel, and A. Datta, J. Phys. Chem. B. 110, 21238 (2006).

    Article  Google Scholar 

  20. B. X. Huang and H.-Y. Kim, J. Am. Soc. Mass Spectrom. 15, 1237 (2004).

    Article  Google Scholar 

  21. Dynamic Light Scattering—Applications of Photon Correlation Spectroscopy, Ed. by R. Pecora, (Plenum Press, New. York, 1985), p. 20.

    Google Scholar 

  22. A. P. Alekhin, G. M. Boleiko, S. A. Gudkova, et al., Ros. Nanotekhnol. 5, 128 (2010).

    Google Scholar 

  23. G. E. Dobretsov, T. I. Syreishchikova, Yu. A. Gryzunov, et al., Biofizika 55, 213 (2010).

    Google Scholar 

  24. B. A. Smith, W. J. Akers, W. M. Leevy, et al., J. ACS 132 (1), 67 (2010).

    Google Scholar 

  25. M. Kovalev, A. Kovaleva, I. Shilov, et al., in Proc. 2nd Int. Symp. “Physics, Engineering and Technologies for Biomedicine,” Oct. 10–14, Moscow, MEPhI, 2017, p. 232.

Download references

Funding

The work was supported by a state task of the Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Shilov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

All patients voluntarily participated in the study in accordance with current ethical standards. (Research protocol no. 4/2020 dated February 5, 2020 was approved at the departmental conference of the Department of Obstetrics and Gynecology no. 1 of the Sechenov First Moscow State Medical University).

Work with laboratory animals (mice) was carried out in accordance with the ethical aspects of experimental research (European Concept for the Protection of Vertebrate Animals, Strasbourg, March 18, 1986)

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, I.P., Rumyantseva, V.D., Ivanov, A.V. et al. Prospects for Infrared Luminescent Diagnostics of Superficially Located Neoplasms Using Ytterbium Porphyrin Complexes. J. Commun. Technol. Electron. 68, 474–480 (2023). https://doi.org/10.1134/S1064226923030130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923030130

Navigation