Skip to main content
Log in

Resonant Scattering of GHz Electromagnetic Waves by a Linear Structure of Two Dielectric Rings on a Magnetic Dipole Mode

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The resonance scattering on the main magnetic mode in a dielectric linear structure consisting of two rings oriented along the wave vector of the incident wave and excited by longitudinally incident linearly polarized microwave is experimentally studied. In the scattering spectrum of the reflected wave, the resonance frequency is split and the amplitudes of both peaks significantly increase in comparison with the amplitude for a single ring in the near zone. There is no splitting of the resonance frequency in the transmitted signal, and the amplitude of the transmitted signal in the far zone significantly increases compared to a single ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. G. Veselago, Phys. Usp. 54 (11), 1161 (2011).

    Article  Google Scholar 

  2. I. B. Vendik and O. G. Vendik, Tech. Phys. 58, 1 (2013).

    Article  Google Scholar 

  3. Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, Appl. Phys. Lett. 92, 051106 (2008).

    Article  Google Scholar 

  4. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, Phys. Rev. B 70, 035418 (2004).

    Article  Google Scholar 

  5. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, Opt. Express 13, 8372 (2005).

    Article  Google Scholar 

  6. B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).

    Article  Google Scholar 

  7. M. Verplanken and J. Van-Bladel, IEEE Trans. Microwave Theory Technol. 24, 108 (1976).

    Article  Google Scholar 

  8. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Sci. Rep. 2, 57 (2012).

    Article  Google Scholar 

  9. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. N. Chichkov, Phys. Rev. B 82, 045404 (2010).

    Article  Google Scholar 

  10. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Opt. Express 19, 4815 (2011).

    Article  Google Scholar 

  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Nano Lett., No. 12, 3749 (2012).

  12. B. Luk’yanchuk, L. M. Vasilyak, V. Y. Pecherkin, S. P. Vetchinin, V. E. Fortov, Z. B. Wang, R. Paniagua-Domínguez, and A. A. Fedyanin, Sci. Rep. 11, 23453 (2021).

    Article  Google Scholar 

  13. D. M. Pozar, Microwave Engineering (John Wiley & Sons, Hoboken, USA, 2012).

    Google Scholar 

  14. Y. Yang, I. Kravchenko, D. Briggs, and J. Valentine, Nat. Commun. 5, 5753 (2014).

    Article  Google Scholar 

  15. M. M. Bukharin, V. Y. Pecherkin, A. K. Ospanova, V. B. Il’in, L. M. Vasilyak, A. A. Basharin, and B. Luk’yanchuk, Sci. Rep. 12, 7997 (2022).

    Article  Google Scholar 

  16. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovskii, and Yu. S. Kivshar, Phys. Usp. 56, 539 (2013).

    Article  Google Scholar 

  17. R. Paniagua-Dominguez, B. Lukyanchuk, and A. Kuznetsov, Control of Scattering by Isolated Dielectric Nanoantennas (Woodhead Publ, UK, 2020).

    Book  Google Scholar 

  18. R. Paniagua-Domínguez, Yu. Ye. Feng, A. E. Miroshnichenko, L. A. Krivitsky, F. Y. Hsing, V. Valuckas, L. Gonzaga, Y. T. Toh, K. A. Yew Seng, B. Luk’yanchuk, A. I. Kuznetsov, Nat. Comm 7, 10362 (2016).

    Article  Google Scholar 

  19. A. B. Shvartsburg, V. Ya. Pecherkin, L. M. Vasilyak, S. P. Vetchinin, and V. E. Fortov, Sci. Rep. 7, 2180 (2017).

    Article  Google Scholar 

  20. A. Shvartsburg, V. Pecherkin, S. Jiménez, L. M. Vasilyak, S. P. Vetchinin, L. Vázquez, and V. E. Fortov, J. Phys. D: Appl. Phys. 51, 475001 (2018).

    Article  Google Scholar 

  21. A. B. Shvartsburg, V. Ya. Pecherkin, L. M. Vasilyak, S. P. Vetchinin, and V. E. Fortov, Phys. Usp. 61 (7), 698 (2018).

    Article  Google Scholar 

  22. A. Shvartsburg, V. Pecherkin, S. Jiménez, L. Vasilyak, L. Vázquez, and S. Vetchinin, J. Phys. D: Appl. Phys. 54, 075004 (2021).

    Article  Google Scholar 

  23. A. B. Shvartsburg, L. M. Vasilyak, S. P. Vetchinin, K. V. Alybin, O. D. Volpyan, Yu. A. Obod, V. Ya. Pecher-kin, P. A. Privalov, and D. V. Churikov, Optics and Spectrosc. 129 (2), 252 (2021).

    Article  Google Scholar 

  24. V. Ya. Pecherkin, A. B. Shvartsburg, L. M. Vasilyak, S. P. Vetchinin, T. S. Kostyuchenko, and V. A. Panov, Usp. Prikl. Fiz. 6 (3), 191 (2018).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and High Education of the Russian Federation, project no. 075-15-2020-785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Pecherkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecherkin, V.Y., Vasilyak, L.M. Resonant Scattering of GHz Electromagnetic Waves by a Linear Structure of Two Dielectric Rings on a Magnetic Dipole Mode. J. Commun. Technol. Electron. 68, 355–359 (2023). https://doi.org/10.1134/S1064226923030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923030129

Keywords:

Navigation